‘Smart grids’ verminderen de noodzaak van netuitbreiding

Hoe beperken we de dure verzwaring van het elektriciteitsnet? Helemaal zal zeker niet lukken, maar verstandig beheer van het huidige net helpt, neem de aanleg ‘smart grids’. Hierover gaat deze blogpost.

De aanleg van een ‘smart grid’ heeft meer met digitalisering te maken dan met extra kabels. Een ‘smart grid’ is een energiesysteem meestal binnen een buurt waarbij PV-panelen, elektrische auto’s, warmtepompen, huishoudelijke apparaten en vormen van energieopslag met elkaar zijn verbonden en communiceren. Dat betekent dat als een overschot van energie op het net dreigt, boilers worden aangezet, auto-accu’s en andere batterijen worden geladen en de levering van elektriciteit van zonnepanelen even wordt stopgezet. De idee is dat zo veel mogelijk elektriciteit binnen de buurt blijft en zo weinig mogelijk van of neer het ‘grote net’ wordt getransporteerd.

De uitwisseling van gegevens tussen huishoudens en netwerk heeft dus veel privacyaspecten; de netbeheerder krijgt invloed op wat zich ‘achter de meter’ afspeelt. Niet iedereen wil dat. Een tussenlaag tussen huishoudens en netwerk biedt dan uitkomst. We spreken dan van een microgrid. Een aantal huishoudens wordt daarbij aangesloten op een afzonderlijk deel van het elektriciteitsnet. Tussen hoofdnet en micronet zit een soort schakelaar, waarmee het microgrid bij een storing zelfs tijdelijk autonoom kan functioneren, dankzij de zonnepanelen en de opgeslagen stroom.

In een microgrid kunnen huishoudens hun overschotten en tekorten aan stroom onderling uitwisselen zonder directe tussenkomst van de netbeheerder of de elektriciteits-producenten. Deze hebben alleen te maken met de overschotten en tekorten van het hele microgrid, waarmee de noodzaak om te interfereren in de mini-netten van individuele huishoudens vervalt. Dankzij het feit dat stroomproductie en -consumptie real-time wordt gevolgd, kan de prijs van de elektriciteit van minuut tot minuut worden vastgesteld. De huishoudens die onderdeel zijn van het microgrid kunnen bijvoorbeeld afspreken om zo veel mogelijk stroom in te kopen als de prijs laag is, omdat het hoofdnet tegen overcapaciteit aanloopt. Op zulke momenten kunnen thuisbatterijen, elektrische auto’s, de eventuele buurtbatterij en boilers en warmwatervaten worden opgeladen en opgewarmd. Dit kan volledig geautomatiseerd worden uitgevoerd. Bijvoorbeeld door de Powermatcher, een door TNO ontwikkelde open source toepassing, waarmee inmiddels 1000 mensen in Nederland werken. Deze videoillustreert dit.

Beviel deze blogpost? De inhoud is gebaseerd op het dossier Duurzame energie, dat een veelheid van feiten en zienswijzen bevat over de energietransitie. Je kunt dit e-boek (145 p.) hier gratis downloaden. 

Dit is de inhoud:

  1. Feiten om te onthouden
  2. Bronnen van duurzame energie in Nederland
  3. Openstaande keuzen
  4. Hoeveel zonnepanelen passen in Nederland?
  5. Energietransitie mogelijk dankzij de zonnecel
  6. Van zonnepaneel naar zonnedak en zonnepan
  7. Zonnepanelen kunnen (bijna) overal liggen
  8. Recycling zonnepanelen: naar de maan en terug
  9. Manieren om netverzwaring te voorkomen
  10. Smart grids: waar techniek, digitale en sociale innovatie samenkomen
  11. Samenwerken in een energiecoöperatie
  12. Duurzaam maken van je woning. Voor jezelf en de aarde
  13. Naar een rechtvaardige energietransitie
  14. Zonder energieopslag geen energietransitie
  15. Aardwarmte
  16. Biomassa
  17. Verwijderen, opvangen en opslaan van CO2
  18. Kernsplitsing en kernfusie
  19. Waterstof
  20. Onze toekomstige energievoorziening

Hoezo, even een paar kerncentrales bouwen?

De argumenten tegen kernenergie zijn minder principieel dan een halve eeuw geleden. Maar dan nog blijft de vraag of het een verstandige keus is. Hierover gaat deze blogpost.

Mijn generatie was gewoon tegen kernenergie. Dat was zelfs nog voor Tsjernobyl. De reden was het gevaar van een melt-down en anders wel de noodslag kernafval op te slaan. De meeste jongeren van nu hebben geen principiële bezwaren tegen kernenergie. Als ze een suggestief (maar realistisch) plaatje zien als hierboven, dan weten ze het wel. Doe maar een paar kerncentrales. Maar zo eenvoudig is het niet. Ik ga het niet hebben over de gevaren, maar over de kosten.

Uit een nieuw rapport van het MIT, The Future of Nuclear Energy in a Carbon Constrained World blijkt dat kernenergie veel duurder is dan alle andere energiebronnen. De prijs van een centrale met een vermogen van 2000 megawatt is ongeveer €13,5 miljard. Ter vergelijking: 200 grote windmolens met een vermogen van 10 megawatt kosten samen €5 miljard inclusief aansluiting.

Dat de bouwkosten zo hoog zijn, komt ook doordat in Europa weinig expertise meer is op het gebied van de bouw van kerncentrales. Daarom zou de Wylfa kerncentrale (3 GW) in Noord-Wales gebouwd worden door het Japanse bedrijf Hitachi. Dat heeft in 2019 besloten met de bouw te stoppen en een verlies van €2,3 miljard voor lief te nemen. De reden is dat de prijs per kilowattuur die de overheid 35 jaar lang zou betalen onvoldoende is om de oplopende kosten van de bouw en de exploitatie te dekken. Deze prijs lag al aanzienlijk boven de huidige marktprijs van elektriciteit, waardoor de overheid het gebruik van kernenergie al die jaren zou subsidiëren. Hitachi ziet ook af van de bouw van een vergelijkbare centrale in het Britse Oldbury.

Finland bouwt sinds 2005 aan een nieuwe centrale in Olkiluoto. Die had er volgens de oorspronkelijke plannen al in 2009 moeten staan, voor een bedrag van €3,2 miljard. Nu hoopt men volgend jaar klaar te zijn; de kosten zijn meer dan verdrievoudigd tot €11 miljard. 

Frankrijk begon in 2007 met de bouw van een nieuwe centrale in Flamanville, aan de westkust van Normandië. Die had in 2012 klaar moeten zijn, à raison van €3,3 miljard. De laatste schatting van de kosten is ruim €19 miljard en ook deze centrale moet volgend jaar draaien. 

Een centrales van 2000 megawatt kost tussen de €10 – 15 miljard . Dat is veel geld, maar vooralsnog durf ik me op grond van dit bedrag alleen nog niet tot de voor- of tegenstanders te rekenen. Wat ik mis in alle publicaties over de energietransitie, is een overzicht van de integrale kosten van alle alternatieven. Het gaat dan niet alleen om de prijs van kerncentrales versus windmolens, maar ook om alle bijkomende kosten, zoals de verzwaring van het elektriciteitsnet, afvang en opslag van CO2 en/of kernafval, de verschillen tussen de kostprijs van de verschillende energiesoorten et cetera.

Beviel deze blogpost? De inhoud is gebaseerd op het dossier Duurzame energie, dat een veelheid van feiten en zienswijzen bevat over de energietransitie. Je kunt dit e-boek (145 p.) hier gratis downloaden. 

Dit is de inhoud:

  1. Feiten om te onthouden
  2. Bronnen van duurzame energie in Nederland
  3. Openstaande keuzen
  4. Hoeveel zonnepanelen passen in Nederland?
  5. Energietransitie mogelijk dankzij de zonnecel
  6. Van zonnepaneel naar zonnedak en zonnepan
  7. Zonnepanelen kunnen (bijna) overal liggen
  8. Recycling zonnepanelen: naar de maan en terug
  9. Manieren om netverzwaring te voorkomen
  10. Smart grids: waar techniek, digitale en sociale innovatie samenkomen
  11. Samenwerken in een energiecoöperatie
  12. Duurzaam maken van je woning. Voor jezelf en de aarde
  13. Naar een rechtvaardige energietransitie
  14. Zonder energieopslag geen energietransitie
  15. Aardwarmte
  16. Biomassa
  17. Verwijderen, opvangen en opslaan van CO2
  18. Kernsplitsing en kernfusie
  19. Waterstof
  20. Onze toekomstige energievoorziening

Hoe mooi zijn zonnepanelen?

Veel huiseigenaren vinden zonnepanelen niet mooi. Deze blogpost gaat alternatieven die beslist wel mooi worden gevonden en in het geval van nieuwbouw amper duurder zijn.

De meeste daken met zonnepanelen zijn inderdaad niet mooi, zeker als ze lukraak de schaarse ruimte opvullen tussen dakkapellen, schoorstenen en andere afvoerpijpen. Bij nieuw- of vernieuwbouw zijn er inmiddels fraaie voorbeelden van integratie van zonnepanelen in het dak als geheel (‘in-daksystemen’). Bovenstaande foto’s zijn daar een voorbeeld van. 

Deze animatie laat zien hoe een bestaand dak wordt vervangen door een dak met geïntegreerde zonnepanelen. Als zonnepanelen een onderdeel worden van het dak, ontstaat een egaal geheel, dat bovendien goedkoper is dan het leggen van een nieuw dak met daarop een laag zonnepanelen.  

Voor daken van karakteristieke en monumentale panden zijn de bovenstaande ‘strakke’ oplossingen ook niet ideaal.

Dakpannen zijn een onderdeel van de uitstraling van zulke panden. In dat geval kan worden gedacht aan zonnecellen die geïntegreerd zijn in dakpannen – zonnepannen of zonnedakpannen – zijn in deze gevallen de gedroomde oplossing. Er zijn inmiddels verschillende typenzonnepannen. De onderstaande foto toont een voorbeeld. 

De grootte van deze zonnepannen is vergelijkbaar met die van gangbare dakpannen. Het is duidelijk dat ze uit enkele zonnecellen bestaan, maar op afstand valt dat minder op[1].  Zonnepannen leiden op een onregelmatig schuin dak met dakramen en schoorstenen tot een aanzienlijk eenvormiger geheel dan het geval zou zijn geweest bij plaatsing van zonnepanelen op het dak. 

Een kritisch punt was het verhoogde risico op brand bij in-dak systemen. In 2018 waren er in Nederland 17 branden in woonhuizen waarvan zonnepanelen de oorzaak waren. Een jaar later waren dat er 12. In beide jaren ging het om relatief veel in-dak systemen.  Die kans wordt steeds kleiner omdat geleerd is fouten werden gemaakt bij de montage en het in-dak system te dicht op de isolerende laag werd gelegd. 

Beviel deze blogpost? De inhoud is gebaseerd op het dossier Duurzame energie, dat een veelheid van feiten en zienswijzen bevat over de energietransitie. Je kunt dit e-boek (145 p.) hier gratis downloaden. 

Dit is de inhoud:

  1. Feiten om te onthouden
  2. Bronnen van duurzame energie in Nederland
  3. Openstaande keuzen
  4. Hoeveel zonnepanelen passen in Nederland?
  5. Energietransitie mogelijk dankzij de zonnecel
  6. Van zonnepaneel naar zonnedak en zonnepan
  7. Zonnepanelen kunnen (bijna) overal liggen
  8. Recycling zonnepanelen: naar de maan en terug
  9. Manieren om netverzwaring te voorkomen
  10. Smart grids: waar techniek, digitale en sociale innovatie samenkomen
  11. Samenwerken in een energiecoöperatie
  12. Duurzaam maken van je woning. Voor jezelf en de aarde
  13. Naar een rechtvaardige energietransitie
  14. Zonder energieopslag geen energietransitie
  15. Aardwarmte
  16. Biomassa
  17. Verwijderen, opvangen en opslaan van CO2
  18. Kernsplitsing en kernfusie
  19. Waterstof
  20. Onze toekomstige energievoorziening

[1] De website van de fabrikant van deze zonnepannen bevat een aantal fraaie referenties van oude en nieuwe panden die met deze pannen zijn bedekt: https://www.zepbv.nl/nl/

Hoe fout is biomassa?

Levert biomassa duurzame energie? Vaak wordt deze vraag ontkennend beantwoord. Maar zonder het gebruik van biomassa is het Parijse akkoord (helemaal) onbereikbaar. Deze blogpost gaat over de manier waarmee we met dit dilemma om kunnen gaan.

Zonder het gebruik van biomassa bij de productie van duurzame energie zou Nederland helemaal onderaan de lijst van het aandeel duurzame energie van alle Europese landen bungelen. In 2019 zorgde biomassa in Nederland voor 50 procent van de groene stroom en 80 procent van de groene warmte. 

Maar volgens sommigen levert biomassa in het geheel geen bijdrage aan de productie van duurzame energie. De fundamentele vraag is dan ook waarom biomassa wél een duurzame energiebron wordt genoemd, terwijl bij verbranding ervan ook CO2 vrijkomt. Het antwoord is dat deze vrijgekomen CO2 al in de dampkring aanwezig was en door te verbranden biomassa was opgeslagen. Verbranding van biomassa veroorzaakt dus geen nieuw CO2. Het argument is op zich valide, als het CO2 betreft die vrijkomt uit de verbranding van biomassa die jonger is dan 1990, het basisjaar voor de berekening van de vermindering van de CO2-uitstoot. Dan is ze de berekening van de CO2-uitstoot na 1990 al een keer meegeteld.

Bovenstaande redenering zou acceptabel kunnen zijn als er zekerheid bestond over de herkomst van de biomassa. Met andere woorden dat haar productie niet het gevolg was van kap van oerbos of verdringing van de productie van landbouwgewassen en er waarborgen tegen verlies aan biodiversiteit zijn. Waakzaamheid is hier geboden omdat tussen 2004 – 2017 in een 24 tal ‘hotspots’ in Afrika, Zuid Amerika en Azië 43 miljoen hectare natuur is vernietigd (10 x Nederland). De bovenstaande foto toont Regenwoud in Borneo dat plaats maakt voor palmolieplantages. 

Vrijwel alle klimaatwetenschappers zijn het erover eens dat de Parijse akkoorden niet haalbaar zijn zonder het gebruik van biomassa. Omdat het gebruik van biomassa veel weerstand oproept heeft het kabinet de SER om advies gevraagd, die het Planbureau voor de leefomgeving daarbij heeft ingeschakeld. Dit adviseert een genuanceerde aanpak, met als voornaamste elementen: 

Alleen gecertificeerde biomassa gebruiken, liefst ook nog lokaal geproduceerd in de vorm van restafval van land en bosbouw. Verder voorrang geven aan toepassingen waarvoor geen alternatieven zijn, zoals in de chemie, de productie van (bio)plastics en in de lucht- en zeevaart. In elk geval is er sprake van een tussenoplossing.

Beviel deze blogpost? De inhoud is gebaseerd op het dossier Duurzame energie, dat een veelheid van feiten en zienswijzen bevat over de energietransitie. Je kunt dit e-boek (145 p.) hier gratis downloaden. 

Dit is de inhoud:

  1. Feiten om te onthouden
  2. Bronnen van duurzame energie in Nederland
  3. Openstaande keuzen
  4. Hoeveel zonnepanelen passen in Nederland?
  5. Energietransitie mogelijk dankzij de zonnecel
  6. Van zonnepaneel naar zonnedak en zonnepan
  7. Zonnepanelen kunnen (bijna) overal liggen
  8. Recycling zonnepanelen: naar de maan en terug
  9. Manieren om netverzwaring te voorkomen
  10. Smart grids: waar techniek, digitale en sociale innovatie samenkomen
  11. Samenwerken in een energiecoöperatie
  12. Duurzaam maken van je woning. Voor jezelf en de aarde
  13. Naar een rechtvaardige energietransitie
  14. Zonder energieopslag geen energietransitie
  15. Aardwarmte
  16. Biomassa
  17. Verwijderen, opvangen en opslaan van CO2
  18. Kernsplitsing en kernfusie
  19. Waterstof
  20. Onze toekomstige energievoorziening