Tag Archives: sustainability

Heeft plastic toekomst?

2 Jul

images-2

De afgelopen 50 jaar is de productie van plastic wereldwijd 20 maal zo groot geworden en deze bedraagt thans ruim 300 miljoen ton, waarvan de helft bestemd is voor eenmalig gebruik[1]. Deze stijging zal bij ongewijzigd beleid doorzetten[2]. In Nederland is 40% van alle kunststoffen bestemd voor verpakkingen en ongeveer 20% wordt verwerkt in de bouw. Van alle geproduceerde kunststoffen is wereldwijd 1% afkomstig van biomassa. 10% van de gebruikte kunststoffen is gemaakt van gerecycled materiaal en de rest is virgin plasticvan fossiele origine.

Milieuschade

De grootste milieuschade van kunststoffen is de vervuiling van de van de leefomgeving door zwerfvuil. In de oceanen drijft inmiddels meer dan 100 miljoen ton. Dit afval degradeert tot microplastics, plastic soep, en behoudt daarbij zijn chemische samenstelling en giftige aard. Microplastics bevinden zich ook in cosmetica, tandpasta en kleding. Microplastics komen uiteindelijk in de voedselcyclus terecht[3]. Daarnaast draagt de productie van kunststoffen bij aan de CO2-uitstoot.

imagesDe chemische industrie zoekt naar alternatieven. De vraag is echter welke prioriteiten daarbij gesteld moeten worden: Omschakelen op duurzame grondstoffen (biomassa), werken aan biologisch afbreekbare producten of verbeteren van hergebruik en recycling. Ik sta bij elk van deze oplossingen stil en formuleer vervolgens enkele actiepunten.

Gebruik duurzame grondstoffen (biobased plastics)

Het gebruik van duurzame grondstoffen (biomassa) bij de productie van kunststof draagt bij aan de reductie van de CO2-uitstoot. De omvang van de reductie verschilt; die van suikerriet en suikerbiet is het grootst en deze gewassen concurreren bovendien het minst met de voedselproductie[4]. De meeste biobased placticszijn echter niet biologisch afbreekbaar en bieden dus geen oplossing voor het ontstaan van plastic soep.

Bio-afbreekbare plastics

Bio-afbreekbare plastics kunnen gemaakt zijn uit biomassa en ook een fossiele origine hebben. Het betreft slechts een beperkt deel van alle plastics[5]. Bio-afbreekbare plastics mogen bij het GTF-afval, maar afvalverwerkers klagen steen en been omdat de meeste consumenten ze niet onderscheiden van biobased plastics, die in de regel niet afbreekbaar zijn.

Een paar producten van biobased plasticsmaken een hele lading compost onbruikbaar[6].

Daarnaast is het nodig om een onderscheid te maken tussen plastics die in de natuur of in het water worden afgebroken (PHA en geregenereerde cellulose) en plastics die uitsluitend afgebroken worden in een industriële composteerinstallatie (PLA , PGA en andere).

20171207-promessaEen voorbeeld van een verpakking die in een industriële composteeromgeving verwerkbaar is, is de verpakking van biologisch vlees van slagerij Promessa, onder andere verkrijgbaar bij de Coop. Zij is gemaakt van Poly Lactic Acid (PLA), dat bestaat uit dextrose en melkzuur[7]. Helaas, als dit verpakkingsmateriaal terecht komt in het zwerfvuil komt zijn de schadelijke gevolgen even groot als die van plastics van fossiele origine[8].

Recycling

Gemeenten verzamelen kunststofafval van huishoudens (de plastic heroes). Helaas is hooguit een kwart daarvan geschikt voor hoogwaardige recycling en zelfs de marktprijs daarvan ligt boven die van virgin plastic. Daarom zijn de kosten van de inzameling van plasticafval jaarlijks € 150 miljoen hoger dan de opbrengst. Er wordt naarstig gezocht naar verdere verbeteringen van de sorteertechniek. Ook chemische recycling kan de hoeveelheid hoogwaardige plastic die uit kunststofafval wordt teruggewonnen vergroten. Het Nederlandse bedrijf Ioniqa lijkt bezig met een doorbraak door PET-afval langs chemische weg terug te brengen naar virgin PET[9]. Onderstaand filmpje toont hoe dat gebeurt.

 

Uiteindelijk wordt een aanzienlijk deel van het ingezamelde kunststofafval ‘laagwaardig’ hergebruikt door verbranding of in geval van biobased plasticvergisting. In dat laatste geval draagt het bij aan de productie van biogas.

Hergebruik

Het opnieuw gebruiken van verpakkingsmateriaal (statiegeld), flessen in het bijzonder, levert de grootste bijdrage aan de vermindering van de noodzaak om nieuw virgin plasticte maken. Maar ook het hergebruik van kunststoffenonderdelen, bijvoorbeeld in de bouw is een optie om de hoeveelheid nieuw te produceren kunststof te verminderen.

Unknown-1

Actiepunten

Plastics zijn materialen met een hoge gebruikswaarde, maar ze veroorzaken steeds vaker milieu- en gezondheidsproblemen. Plasticsoep is een groter probleem dan de CO2die bij de productie van kunststof vrijkomt. Hoe meer eenmaal gemaakt plastic opnieuw wordt gebruikt, via een statiegeldsysteem of via hoogwaardige recycling, hoe minder virgin plasticgeproduceerd moet worden en hoe minder afval terechtkomt bij het zwerfvuil. Dit leidt tot de volgende actiepunten:

  1. Bestrijden van het imago van plastic als ‘wegwerpartikel’. Plastic verpakkingen dienen kwaliteit en duurzaamheid uit te stralen waarvoor het betalen van statiegeld redelijk wordt gevonden. Het gaat niet alleen om flessen maar bijvoorbeeld ook om doosjes voor de verpakking van vlees, kaas en salades.
  2. Kiezen voor plastics die hoogwaardig gerecycled kunnen worden, indien hergebruik via statiegeld geen alternatief is. Gescheiden inzamelen tot dit type plastics beperken. Plastics die worden verbrand of vergist kunnen bij het restafval.
  3. Bioafbreekbare plastics duidelijk herkenbaar maken en consequent toepassen, dus als verpakkingsmateriaal voor alle vleesproducten en niet alleen voor enkele.
  4. Gebruiken van fossiele grondstof in plaats van schaarse biomassa, voor de productie van kunststoffen waarvan de levensduur via hergebruik en/of recycling oneindig kan worden verlengd
  5. Vermijden van het gebruik van oxo-degradeerbare plastics. Dit zijn kunststoffen die in het water of de grond snel degraderen, maar daarmee het ontstaan van microplastics alleen maar versnellen[10]
  6. Gebruiken van het label industrieel composteerbaarvoor kunststoffen die in de GTF-bak mogen. Dus niet biologisch afbreekbaar.
  7. Snel in de natuur afbreekbare plastics zonder milieuschade gebruiken als grondstof van producten met een hoge kans om in het zwerfvuil terecht komen (bijvoorbeeld verpakkingen van take-away producten).
  8. Opruimen van plastics in de oceanen en achterwege laten van gebruik van microplastics in consumentenproducten.

Plastic heeft toekomst indien het niet meer wordt beschouwd als wegwerpproduct

[1]https://www.wnf.nl/wat-wnf-doet/themas/oceanen/bedreigingen/plastic-soep-het-probleem.htm

[2]https://www.cpb.nl/publicatie/de-circulaire-economie-van-kunststof-van-grondstoffen-tot-afval

[3]http://www.p-plus.nl/nl/nieuws/microplastics-microbeads

[4]https://www.wur.nl/upload_mm/0/6/d/dc76c21c-af7b-4130-88cd-cde6dd427abf_170419%20Report%20Bio-based%20Plastic%20Facts.pdf

[5]https://www.cpb.nl/publicatie/de-circulaire-economie-van-kunststof-van-grondstoffen-tot-afval

[6]https://www.ad.nl/economie/afvalverwerker-heeft-het-helemaal-gehad-met-bioplastic~a09be8a3/?

[7]https://www.duurzaambedrijfsleven.nl/recycling/26463/toplijst-3-biobased-alternatieven-voor-plastic-verpakkingen

[8]https://www.duurzaambedrijfsleven.nl/recycling/27261/zo-maakt-orgaworld-bioplastics-van-gft-afval

[9]https://www.kidv.nl/6974

[10]https://www.duurzaambedrijfsleven.nl/retail/28495/albert-heijn-wil-af-van-plastic-tasjes-voor-groente-en-frui

Advertenties

Wat iedereen moet weten over de energietransitie

17 Jun

koeien-in-weiland

Of, hoe hou je verjaardagspartijtjes gezellig?

De Nederlandse politiek, het bedrijfsleven en de milieubeweging lijken elkaar gevonden te hebben in het streven naar een samenleving zonder CO2-uitstoot[1]. Naarmate meer personen zich de consequenties daarvan realiseren, komen er meer vragen maar ook meer weerstand. Dat kan ten koste gaan van de sfeer van menig verjaardagspartijtje of ander gezellig samenzijn. Daarom zou eigenlijk iedereen het volgende moeten weten en de moeite moeten nemen om deze saaie blogpost te lezen, zo niet van buiten te leren.

Vooraf

Enkele basale begrippen

Watt:

Maat voor elektrisch vermogen. Een zonnepaneel met een vermogen van 300 watt produceert onder ideale omstandigheden een constante ’stroom’ van 300 watt. Daarom wordt in dit geval van wattpiek gesproken.

Joule / kilowattuur

Maten voor de hoeveelheid geproduceerde energie binnen een gegeven hoeveelheid tijd.

  • 1 joule is de productie (of het verbruik) van 1 watt per seconde.
  • 1 kilowattuur is de productie (of het gebruik) van 1000 watt gedurende een uur.

Het energieverbruik van een gemiddeld huishouden per jaar

Aardgas: 1500 m3; komt overeen met 15.000 kilowattuur

Elektriciteit : 3500 kilowattuur

Brandstof:

Benzineauto bij 20.000 km per jaar en verbruik 1: 20. Dit is 1000 liter en komt overeen met 10.000 kilowattuu

Elektrische auto (BMWi3) gebruikt bij 20.000 km per jaar 3200 kilowattuur.

Treinreis: 1 km (benzine)auto = 4 km per trein.

Vliegtuigreis: 1 km (benzine)auto = 1 km per vliegtuig

Unknown-3

De zon als energieleverancier

Vermogen per paneel

Het vermogen van een zonnepanelen varieert van 250 – 350 wattpiek.

Dat wil zeggen dat ze onder ideale omstandigheden (loodrechte inval van zonnestraling, alle dagen per jaar gedurende 8 uur per dag) 250 resp. 350 kilowattuur aan elektriciteit per jaar produceren.

Dergelijke ideale omstandigheden doen zich in Nederland niet voor. Uitgangspunt is daarom dat een paneel van 300 wattpiek gemiddeld 250 kilowattuur per jaar oplevert.

Voor het gemiddelde huishouden zijn 14 zonnepanelen voldoende zijn om de behoefte aan elektriciteit te dekken. 

Zonne-energie in Nederland

In 2015 was het opgesteld vermogen voor de productie van zonne-energie 2000 megawatt op een oppervlak van 12 km2. Dit is voldoende stroom voor ongeveer 450.000 huishoudens.

Dat zal naar verwachting groeien naar 6000 megawatt in 2020.

Ter vergelijking, de in 2015 geopende Eemshavencentrale van RWE heeft een vermogen van 1500 megawatt.

Het ruimtebeslag van zonnepanelen

Zonnepanelen zijn verspreid over daken van particulieren en bedrijven, maar ze kunnen ook ‘grondgebonden’ zijn (zonneparken, zonneweiden).

Panelen op dak:

Het aantal panelen dat op een dak past varieert sterk. Op een schuinstaand dakoppervlak van 100 x 100 m. zonder ramen en schoorstenen passen ongeveer 4500 zonnepanelen (stroom voor 350 gemiddelde huishoudens).

Grondgebonden panelen[2]

Op een zonneweide van 1 ha passen ongeveer 2500 zonnepanelen. Dit is goed voor 175 gemiddelde huishoudens.

Bij een aanzienlijk groter aaneengesloten oppervlak loopt dit aantal op tot 4500 panelen – of meer – per ha (goed voor ruim 350 gemiddelde huishoudens).

Soms lenen grote oppervlakten zich voor de plaatsing van windmolens en zonnepanelen tegelijkertijd.

De kosten van een zonnepark van 100.000 panelen (25 ha) bedragen ongeveer €25 miljoen.

59AF0F5B-1ABB-42CB-B024-9C8288284F3E

De wind als energieleverancier

Windenergie in Nederland

In 2015 stonden in Nederland 2500 windmolens die elektriciteit opwekten met een gezamenlijk vermogen van 3000 megawatt.

Het vermogen per windmolen (in megawatt) groeit snel. De molens die nu in windparken op land worden geplaatst hebben per stuk een vermogen van 3,5 megawatt.

Het vermogen van windmolens op zee loopt inmiddels op tot 10 megawatt.

Vollasturen

De tijd die windmolens energie produceren wordt herleid op zogenaamde vollasturen. Het aantal vollasturen op land wordt gesteld op 2500 en dat op zee op 4000. Er zijn overigens ook vermeldingen van hogere en lagere waarden in omloop.

Een windmolen met een vermogen van 3,5 megawatt op land levert 8,75 miljoen kilowattuur aan energie (goed voor 2500 gemiddelde huishoudens)

Een windmolens met een vermogen op van 10 megawatt op zee levert 40 miljoen kilowattuur aan energie (goed voor 11.500 gemiddelde huishoudens)

Ruimtebeslag van windmolens

Windmolens moeten voldoende onderlinge afstand hebben. Deze is afhankelijk van de straal van de wieken.:

Bijvoorbeeld

Een windmolenpark in Drenthe telt 50 molens van 3 megawatt op een oppervlak van 500 ha. Zij leveren samen 320 miljoen kilowatt aan vermogen. Men gaat uit van 2000 volwinduren, wat 640 miljoen kilowattuur oplevert. Dit is stroom voor 90.000 gemiddelde huishoudens. De kosten bedroegen € 200 miljoen.

 

Energieverbruik in Nederland

We onderscheiden doorgaans vijf gebruikersgroepen: gebouwde omgeving, industrie, verkeer, landbouw, overig (waaronder luchtvaart).

Een andere indeling is: verkeer en vervoer, land- en tuinbouw, industrie en huishoudens (exclusief autogebruik)

De productie van energie

Om energie te maken gebruiken we grondstoffen, ook wel energiedragers genoemd. Deze grondstoffen voeren we in, winnen we zelf en/of voeren we uit. Hieronder tref je een overzichtelijk schema aan.

screenshot 2

Bron: Compendium voor de leefomgeving 2017

Energiedragers ondergaan doorgaans verschillende bewerkingen. Bijvoorbeeld aardgas, aardolie en steenkool worden omgezet in elektriciteit maar ook in talloze chemische producten. Bij deze omzettingen treedt energieverlies op.

Een deel van de energiedragers wordt gebruikt voor niet-energetische toepassingen, bijvoorbeeld in chemische industrie. Deze zijn inbegrepen in het totale energieverbruik van 3155 petajoule dat het schema vermeldt.[3]

Mix aan energiedragers

Het aandeel van de afzonderlijke energiedragers (voor energetische en niet-energetische toepassingen) is in de periode 2000 – 2015 gewijzigd[4]:

  • Het aandeel van aardgas is afgenomen van 47% naar 39% in 2015;
  • het aandeel kolen nam toe van 10% naar 15%.
  • Het aandeel van olie (38%) is licht gestegen.
  • Het aandeel hernieuwbare bronnen is toegenomen van 1,6% naar 5,8%. Dit groeit naar verwachting tot 12,4% in 2020 en tot 16,7% in 2023.

Zie hiervoor ook de onderstaande figuur

screenshot 4

Bron: Nationale energieverkenning 2017

Binnen de categorie hernieuwbare bronnen steeg het aandeel van zon en wind en daalde het aandeel van biomassa. In 2015 kwam nog meer dan 60 procent van de energie uit biomassa. In 2023 is dat naar verwachting iets minder dan 50 procent.

Elektriciteitsgebruik

Het elektriciteitsverbruik in Nederland zal tot 2030 stabiel zijn en ongeveer 412 petajoule bedragen. Groeiende efficiency zorgt voor daling en groeiend gebruik door elektrische auto’s en van meer apparaten – denk aan datacenters – voor toename.

Het aandeel van elektrische auto’s in het elektriciteitsverbruik is 2016 ongeveer 6 petajoule en zal stijgen tot 20 petajoule in 2030.

Als je het elektriciteitsverbruik voor huishoudens (81 petajoule) vergelijkt met het totale verbruik (3155 petajoule), of alleen het totale elektriciteitsverbruik (412 petajoule) dan moet je vaststellen dat de opmerking dat een wind- of zonnepark voor zoveel duizend huishoudens elektriciteit levert niet tot overmatig optimisme mag leiden.

 

Energieverbruik in de toekomst

Is een koolstofarm of -vrij Nederland haalbaar?

Ja, afgaande op berekeningen van het Planbureau van de leefomgeving[5]. Er moet wel aan vier voorwaarden worden voldaan:

  • Groot aandeel van elektriciteit uit hernieuwbare bronnen in combinatie met voldoende opslagcapaciteit
  • Afvangen en opslaan van CO2 (CCS; carbon capture and storage)
  • Gebruik van biomassa
  • Energiebesparing

De kosten van de energietransitie worden geschat op € 25 miljard per jaar.

Mix van energiedragers

Het Parijse energieakkoord gaat uit van beperking van de CO2-uitstoot met ongeveer 95%. Dit betekent een geheel andere mix van energiedragers voor de productie voor energetische en niet-energetische doelen.

Bij de samenstelling van deze mix zijn de volgende componenten beschikbaar:

  • Hernieuwbare energiebronnen als de zon, de wind en aardwarmte
  • Overige ‘schone’ energiebronnen als hydro-energie en kernenergie
  • Biomassa, ook als bron voor de productie van biogas en als grondstof voor de chemische industrie
  • Steenkool, aardgas en aardolie, in combinatie met het opvangen en bewaren van CO2 (CCS; carbon capture and storage)
  • Waterstof met elektriciteit als ‘grondstof’
  • Lucht (als bron van warmte en koude met behulp van elektrisch aangedreven warmtepompen
  • Invoer van schone energie

Het onlangs verschenenrapport Verkenning van klimaatdoelen, van lange termijn beelden naar korte termijn actie van het Planbureau voor de leefomgeving [6](oktober 2017) laat zien dat elke mix heeft voor- en nadelen heeft. Hoe meer fossiele grondstoffen worden gebruikt, hoe meer CCS vereist is. Hoe meer elektriciteit wordt gebruikt, des te ingrijpender zijn de gevolgen voor de infrastructuur, maar hoe minder verliezen er tijdens het productieproces optreden.

capture-decran-2018-02-21-a-08-32-07

De opgave waarvoor Nederland staat: productie van 2000 – 2500 petajoule per jaar bij 95% reductie CO2

Het voornoemde rapport gebruikt verschillende modellen om bij gewenste bijdrage van de afzonderlijke componenten aan elk van de mixen vast te stellen.

Elke mix moet tussen 1800 – 2500 petajoule per jaar opleveren, afhankelijk van de omvang van de verliezen tijdens het productieproces (verschil tussen primair energieverbruik en finaal energieverbruik). Hoe meer elektriciteit wordt gewonnen met hernieuwbare bronnen, des te lager zijn deze verliezen.

Het aandeel van elektriciteit in de productie van elektriciteit in elk van de mixen is daarom groot, variërend tussen de 900 – 1300 petajoule.

Ik ga hierna in op de maximale productie van elektriciteit uit hernieuwbare energiebronnen. Uitgangspunt daarbij is de opwekking van 1250 petajoule met zonne- en windenergie en van 50 petajoule met overige ‘schone’ bronnen.

De keuze van de overige componenten van de mix laat ik voor het moment buiten beschouwing.

Zonne- en windenergie moeten beide maximaal worden ingezet; ze vullen elkaar goed aan, Hierbij geldt dat minimaal ⅔ van energie afkomstig dient te zijn van de wind (835 petajoule; 235 miljard kilowattuur) en ⅓ van de zon (415 petajoule, 115 miljard kilowattuur)

Hoeveel windturbines leveren samen 235 miljard kilowattuur windenergie op?

Het huidige geplaatste vermogen (4000 megawatt) levert 10 miljard kilowattuur op.

Het resterende vermogen (225 megawatt) kan komen uit 3000 molens extra op het land (3,5 megawatt capaciteit, 2500 volwinduren) Dit levert ruim 25 miljard kilowattuur aan capaciteit.

De overige 200 miljard kilowattuur zou moeten komen van 5.000 molens op zee (10 megawatt, 4000 volwinduren)

Volgens de Nederlandse Windmolen Associatie is er op de Noordzee plaats voor 25.000 windmolens met een capaciteit van 10 megawatt, waarvan er 3400 kunnen staan op het Nederlandse deel[7]. Uiteraard zijn ook andere combinaties denkbaar, maar het plaatsen van windmolens op land is veel lastiger te combineren met andere vormen van landgebruik en zal meer weerstand oproepen.

Duurzaamheid - Zonnepanelen en windmolens 4

Hoeveel zonnepanelen leveren samen 115 miljard kilowattuur zonne-energie op?

Het huidige geplaatste vermogen aan zonnepanelen is ruim 2000 megawatt, hetgeen 2 miljard kilowattuur oplevert.

Nog te plaatsen zijn daarom 452 miljoen panelen (vermogen 300 wattpiek).

Deloitte heeft onlangs berekend dat er in Nederland 892 km2 bruikbaar dakoppervlak is. Daarop passen in totaal 270 miljoen panelen[8]. Het is aan te bevelen om deze capaciteit met voorrang te benutten.

Er resteren dan 182 miljoen panelen (45 miljard kilowattuur). Deze zullen een ‘grondgebonden’ karakter moeten hebben. Ervan uitgaande dat er 450.000 panelen op een km2 grond geplaatst kunnen worden, betekent dit dat ongeveer 400 km2 aan grond met zonnepanelen bedekt moet worden. De grond kan deels dezelfde zijn al waar ook windmolens komen te staan.

screenshot2

Het venijn zit in de staart

Op dit moment lijkt de energietransitie een breed draagvlak te hebben. Naarmate de implicaties duidelijker worden, zal het verzet toenemen. Gezien het ingrijpende karakter van de transitie is dat begrijpelijk. Maar om diezelfde reden is ook een breed draagvlak nodig. Daarom is een constructieve en open discussie gewenst. De volgende tegenwerpingen zullen vrijwel zeker worden gehoord; ze laten zich goed van een wederwoord voorzien

De opwarming van de aarde is het gevolg van klimaatsverandering. De vele miljarden voor duurzame energie zijn daarom weggegooid geld. Er is nog voor vele tientallen jaren olie- en steenkoolreserves en in deze periode moet worden door alternatieven voor de periode daarna.

Het is zeer wel mogelijk dat we ons in de aanloop naar een warmere periode bevinden. Zeker is dat een eventuele ‘natuurlijke’ opwarming versneld wordt door menselijk handelen. Het afbouwen van de CO2-emissie zal de desastreuze gevolgen van klimaatverandering – een proces dat duizenden jaren duurt – zeker vertragen. Bovendien verdwijnen in een koolstofvrije economie ook andere emissies, zoals fijnstof die in elk geval een negatief effect op onze gezondheid hebben.

De gevaren van kernenergie worden schromelijk overdreven. Kernenergie is schoon en een uitstekend alternatief voor fossiele brandstoffen. Voor de toekomst bieden alternatieven, zoals kernfusie en thorium-reactoren, mogelijk nog veiliger oplossingen.

De gevaren van kernenergie mogen niet worden onderschat, waarbij terrorisme een niet te verwaarlozen rol speelt. Bovendien zadelen we vele generaties na ons op met de opslag van radioactief afval, evenmin niet zonder gevaren.

Er zijn veel betere plaatsen te vinden voor de plaatsing van windmolens dan in mijn directe omgeving

Er is inderdaad een zeer zorgvuldig proces nodig waarin op een transparante manier alternatieven voor vestigingsplaatsen van zonne- en windparken vergeleken worden. Het streven om zo veel mogelijk windenergie op zee te halen en zonnepanelen zo veel mogelijk op daken te leggen helpt.

Het is onrealistisch om Nederland al in 2050 voor 95% karboonvrij te hebben

Dat zou best wel eens kunnen. We moeten echter af van de traditionele manier van projectmatige planning. Nederland karboonvrij in 2050 is de stip aan de horizon. We moeten terug redeneren vanaf dat punt en vervolgens stap voor stap aan de slag gaan om dit ambitieuze doel te bereiken. Van elke eerstvolgende stap kan het tijdsbeslag worden ingeschat.  Als we langer over de tussenstappen doen, komt het voorlopige einddoel verder weg te liggen. Dat is echter te prefereren boven een aanpak die nu al inzet op de realisering van minder ambitieuze doelen op lange termijn.

De grootste bedreiging van de realisering van de plannen is overigens het gebrek aan voldoende vakmensen. Niet aan geld.

[1]http://themasites.pbl.nl/energietransitie/

[2]https://www.rvo.nl/sites/default/files/2016/09/Grondgebonden%20Zonneparken%20-%20verkenning%20afwegingskadersmetbijlagen.pdf

[3]http://www.clo.nl/indicatoren/nl0201-aanbod-en-verbruik-van-energiedragers

[4]http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-nationale-energieverkenning-2017_2625.PDF

[5]http://www.pbl.nl/sites/default/files/cms/publicaties/PBL-2011-Routekaart-energie-2050-500083014.pdf

[6]http://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-verkenning-van-klimaatdoelen-van-lange-termijnbeelden-naar-korte-termijn-actie-2966.pdf

[7]http://www.nwea.nl/standpunten/wind-op-zee/visie-nwea-op-windenergie-op-zee

[8]https://www2.deloitte.com/nl/nl/pages/data-analytics/articles/zonnepanelen.html

 

Amsterdam: slimmer dan smart

7 Jun

I Amsterdam

Sinds november 2016 ben ik curator van Amsterdam Smart City. Over de zin en onzin van smart heb ik het nodige geschreven[1]. Maar hoe smart is Amsterdam[2] eigenlijk? Nu het WeMakeTheCity Festival[3] nadert, geef ik hieronder een antwoord op deze vraag.

Amsterdam Smart City

Amsterdam Smart City (ASC) ziet zichzelf als innovatieplatform voor een toekomstbestendige stad. Op dit platform opereert een snelgroeiende gemeenschap van 400 organisaties en meer dan 5000 personen, waaronder veel startups[4]. Binnen deze gemeenschap wordt een groot aantal projecten uitgevoerd, waaronder Circular Amsterdam[5] en City-zen[6].

ASC heeft nauwe banden met de Amsterdam Economic Board, een stichting die samenwerking tussen kennisinstellingen, bedrijven en overheden tot stand brengt. Uit de strategie van Amsterdam Economic Board en die van ASC in het bijzonder blijkt een sterke voorkeur voor bottom-up ontwikkeling van stedelijk beleid.

website ASC

Open data

Het concept smart city verwijst naar het gebruik van data en de inzet van technologie in stedelijk beleid[7]. Amsterdam is een voorbeeld voor menige andere stad op het gebied van open data. Uitgangspunten zijn toegankelijkheid, interoperabiliteit en transparantie van data en de bescherming van privacy van de bewoners.

Het Open data for transport and mobilityprogramma won de Green Digital City Award in 2012 op de Smart City Expo in Barcelona[8]. Via dit programma stelt de gemeente alle gegevens met betrekking tot verkeer en vervoer ter beschikking aan derden, onder het motto We the data, you the apps.

Vanaf 2015 zijn gegevens over verkeer en vervoer, openbare ruimte, gebouwen, gezondheidszorg, milieu, vergunningen en vele andere te vinden op de portal Stadsgegevens[9]. Deze is gemaakt met open software en de broncode is voor iedereen beschikbaar[10]. Om datagebruik te bevorderen, werkt Amsterdam samen met bedrijven en (kennis)instellingen in een datalab[11].

Een indrukwekkend product, gemaakt met deze gegevens, is de Energie Atlas, die alle informatie bevat om energieplannen te maken op buurt- en wijkniveau[12]. Ook met deze atlas wil de gemeente zoveel mogelijk initiatieven van onderop stimuleren.

Wat is een smart city?

Criteria om te beoordelen wanneer een stad smart mag heten bestaan niet. Met andere woorden, elke stad kan zich smart noemen. Als dat gebeurt, komt het initiatief meestal van de marketingafdeling. In een recent artikel[13] heb ik drie typen smart cities onderscheiden.

Smart City 1.0 streeft naar hoogwaardige technologische infrastructuur, die naadloos computers, sensoren, apparaten en mogelijk ook mensen met elkaar verbindt. Het gebruik van technologie wordt doorgaans achteraf gerechtvaardigd met een verwijzing naar de bijdrage ervan aan de aanpak van stedelijke problemen[14].

In Smart City 2.0 staat de aanpak van stedelijke problemen centraal en er is een open oog voor het gebruik van hoogwaardige technologische hulpmiddelen daarbij. De prioriteiten zijn meestal anders dan in het geval van Smart City 1.0.

Smart City 3.0 bevordert initiatieven van burgers (individueel, in een buurt of als onderdeel van een netwerk), bedrijven en (kennis)instellingen. Het stadsbestuur faciliteert het gebruik van ICT en creëert de benodigde infrastructuur.

Hoe smart is Amsterdam?

Amsterdam is geen voorbeeld van Smart City 1.0. De aanleg van een omvattende digitale infrastructuur, inclusief sensornetwerken, speelt geen dominante rol. Het predicaat Smart City 2.0 komt ook niet in aanmerking: Bij het omgaan met stedelijke problemen speelt informatie- en communicatietechnologie een rol, maar komt daarbij zeker niet in de eerste plaats.

Ik zie veel aanwijzingen dat Amsterdam zich ontwikkelt in de richting van Smart City 3.0. Het belangrijkste ijzer in het vuur daarbij is de samenwerking tussen bedrijven, instellingen en overheid, aangemoedigd door de Amsterdam Economic Board en de Amsterdam Smart City-community.

Er is echter nog veel te doen: Veel projecten zoals de Virtual Powerplant bevinden zich in een eerste fase of zijn ‘pilots’, zonder onmiddellijke follow-up. Meer aandacht is ook vereist voor open en kritische evaluatie van projecten. Ten slotte leeft het idee van de smart city slechts in beperkte mate onder de bevolking[15].

Maak kennis met een van deze projecten, de virtuele elektriciteitscentrale:

Amsterdam: slimmer dan smart

Beoordelen in hoeverre Amsterdam een smart city is, geeft een onbevredigend gevoel. De focus op de rol van technologie leidt af van zo veel andere initiatieven – samengevat in vijf grootstedelijke uitdagingen – waarmee Amsterdam zich onderscheidt.

screenshot

Ik sta – ter illustratie – bij enkele van deze initiatieven stil.

Duurzaamheid

De Duurzaamheidsagenda (hieronder) werd in 2015 vastgesteld als vertrekpunt voor het nieuwe college van burgemeester en wethouders[16]. Het ziet ernaar uit dat het net nieuw aangetreden gemeentebestuur aan de uitvoering daarvan de hoogste prioriteit toekent.

screenshot 2

Vanwege zijn inspanningen op het gebied van energiebesparing (en het gebruik van open data daarbij) behoorde de gemeente – samen met Reijka en Valencia – tot de finalisten van de Green Digital Charter Award, uiteindelijk gewonnen door Reijka[17].

Energietransitie

Als onderdeel van het City-zen-project is onlangs een ‘roadmap’ gepresenteerd voor de transitie naar duurzame energie, als alternatief voor het gebruik van fossiele brandstoffen[18]. Verwacht wordt dat de grootstedelijke regio in 2040 geen CO2-uitstoot meer zal hebben en aan haar eigen energiebehoefte kan voldoen.

Ontwikkeling van een circulaire economie

Circular AmsterdamIn 2015 heeft de gemeente Amsterdam de basis gelegd voor de ontwikkeling van een circulaire economie, vastgelegd in de nota Amsterdam Circular: Vision and roadmap for the city and region[19]. Op basis hiervan zijn tientallen projecten gestart, zij het meestal op kleine schaal. Alle projecten zijn in 2017 beoordeeld. Het rapport Amsterdam Circular: Evaluation and action perspectives[20] concludeerde dat een circulaire economie een realistisch perspectief is.  Amsterdam heeft voor deze aanpak – met accent op kleinschalige initiatieven – tevens de World smart city award for circular economy gewonnen. Ondertussen zijn de eerste resultaten op het gebied van circulaire constructie zichtbaar. In een aantal procedures hebben circulaire uitgangspunten een belangrijke rol gespeeld[21].

Mobiliteit

Amsterdam stimuleert fietsen en heeft een uitstekend openbaar vervoer. Dit maakt uitgebreid gebruik van ICT om klanten te informeren en bedrijfsprocessen te optimaliseren. Met het Smart Mobility-programma wil de gemeente de bijdrage van (informatie-) technologie aan de aanpak van verkeersproblemen versterken. Een substantiële doorbraak van digitale technologie in de oplossing van mobiliteitsproblemen wordt echter waarschijnlijk alleen bereikt met de komst van autonome auto’s.

De Amsterdam Economic Board heeft voorgesteld om te kiezen voor inclusieve groei als overkoepelend thema. Ik vind dat een verstandige keus. Vrijwel overal ter wereld gaan economische groei en innovatie gepaard met een aantasting van de natuur en groeiende sociale ongelijkheid (‘The winner takes all’)[22]. Een betere balans is dan ook nodig. Dit geldt ook voor Amsterdam [23].

Amsterdam all-inclusive

Elders heb ik inclusive groei omschreven als het samengaan van vier perspectieven op ontwikkeling: welzijn, welvaart, rechtvaardigheid en digitale connectiviteit[24]. Het onderstaande ‘charter’ kan daarbij richting geven.

screenshot 3

Een laatste vraag is wanneer inclusieve groei als doel is bereikt. Misschien is het antwoord op deze vraag wel ‘nooit’. Belangrijker is om stippen op de horizon te plaatsen. Zodra deze zijn bereikt, zal een nieuwe generatie opnieuw stippen zetten, uitgaande van eigen inzichten en prioriteiten. En dat is maar goed ook.

[1]  Deze posts zijn te vinden op  www.smartcityhub.com

[2]  Als ik het over Amsterdam heb, bedoel ik de ‘metropool regio’, het samenwerkingsverband tussen de provincies Noord-Holland en Flevoland, de vervoersregio en 33 gemeenten in het noordelijke deel van de Randstad. Als het over ‘de stad Amsterdam’ gaat, gebruik ik de term gemeente.

[3]https://wemakethe.city/nl/

[4]https://amsterdamsmartcity.com/partners

[5]https://amsterdamsmartcity.com/circularamsterdam

[6]http://www.cityzen-smartcity.eu/nl/home-nl/amsterdam/

[7]http://www.tandfonline.com/doi/abs/10.1080/10630732.2014.942092

[8]http://www.greendigitalcharter.eu/amsterdam-wins-smart-city-world-congress-award

[9]https://data.amsterdam.nl/#?mpb=topografie&mpz=11&mpv=52.3731081:4.8932945&pgn=home

[10]http://www.greendigitalcharter.eu/amsterdam-opens-its-city-data-platform

[11]https://www.europeandataportal.eu/sites/default/files/edp_analytical_report_n4_-_open_data_in_cities_v1.0_final.pdf

[12]https://maps.amsterdam.nl

[13]http://smartcityhub.com/technology-innnovation/smart-beyond-technology-push/

[14]http://www.tandfonline.com/doi/abs/10.1080/13604813.2014.906716

[15]https://www.eli5.io/blog/smart-city-citizens

[16]https://www.google.nl/search?client=safari&rls=en&q=duurzaam+amsterdam+pdf&ie=UTF-8&oe=UTF-8&gfe_rd=cr&dcr=0&ei=q1RkWpKEIIzH8AfZs6iQCA

[17]http://www.eurocities.eu/eurocities/allcontent/Amsterdam-region-Rijeka-and-Valencia-finalists-for-the-2016-GDC-Award-Promoting-open-and-interoperable-solutions-WSPO-AHRKGT

[18]http://www.eurocities.eu/eurocities/allcontent/Amsterdam-region-Rijeka-and-Valencia-finalists-for-the-2016-GDC-Award-Promoting-open-and-interoperable-solutions-WSPO-AHRKGT

[19] https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[20]http://smartcityhub.com/collaborative-city/smart-building-the-long-way-to-a-circular-economy/

[21]https://wp.me/p32hqY-1Ei

[22]http://smartcityhub.com/governance-economy/does-smartification-keep-de-urbanization-at-arms-length/

[23]Duncan McLaren & Julian Agyeman: Sharing Cities: A case for truly smart and sustainable cities, MIT Press, Cambridge Mass. 2015

[24]http://smartcityhub.com/technology-innnovation/beyond-the-smart-city/

De opbrengst van windparken; nattevingerwerk?

21 Mei

Unknown-1

Om in 2050 duurzaam te kunnen voorzien in onze energiebehoefte, is het nodig om zowel het aantal zonnepanelen als het aantal windmolens drastisch uit te breiden. Een windmolen op land (vermogen 3 megawatt) levert gemiddeld even veel op als 10 ha. zonnepanelen (250 wattpiek, 3000 panelen per ha.). Ze heeft echter minstens een  20 ha. nodig; ruimte die overigens bruikbaar blijft voor een aantal andere bestemmingen.

In mijn vorige blogpost verwees ik naar de sterk uiteenlopende schattingen van de opbrengst van zonneparken. De prognoses van de opbrengst van windparken variëren eveneens sterk.

Het rendement van een windmolen hangt af van een aantal omstandigheden.

  • In de eerste plaats de locatie; op zee en in de kust provincies waait het gemiddeld meer en harder dan in de rest van Nederland. Bij windkracht 6 (12 m/seconde) functioneren windmolens het best. Bij hardere wind en als het minder waait dan 2 m/seconde worden ze stilgezet.
  • Hoger in de lucht is meer wind, windmolens met een grote ashoogte brengen dus meer op. Gangbare windturbines hebben een ashoogte van 80 tot 120 meter
  • Een belangrijke rol speelt de lengte van de rotorbladen. Als de lengte van de rotor verdubbelt, verviervoudigt de productie. De rotoren van de meest gangbare windmolens variëren tussen 45 tot 60 meter. Bij de grootste windturbines op zee (8,8 MW) loopt dit op tot wel 90 meter[1].

Dit zijn vrij eenduidige gegevens; niets is echter is zo onvoorspelbaar als windkracht. Om de opbrengst van een windmolen te berekenen, worden de snelheid en duur dat een turbine draait teruggerekend naar het aantal ‘vol-last-uren’. Als vuistregel wordt een aantal van 2200 per jaar gehanteerd[2].

Met deze gegevens kan worden berekend hoeveel stroom een windmolen per jaar levert:

Vermogen (in kilowatt) x vol-last-uren = opbrengst in kilowattuur (per jaar).

3.000 x 2200 = 6.600.000

De uitkomst delen door de gemiddelde energiebehoefte van een huishouden (3500 kilowattuur) levert op hoeveel huishoudens een windmolen van energie kan voorzien. Dat is in ons voorbeeld 1850.

Zo’n molen kost rond de € 4 miljoen.

Wie het realiteitsgehalte van plannen voor de bouw van windmolens moet beoordelen, wordt echter geconfronteerd met uiteenlopende gegevens.

59AF0F5B-1ABB-42CB-B024-9C8288284F3E

Een goed voorbeeld daarvan is het nieuwe windmolenpark in de Wieringermeer. Hier bouwt NUON (Vattenfall) 100 windmolens met een vermogen van 3,6 MW elk[3]. Per windmolen wordt een opbrengst verwacht van niet minder dan 13 miljoen kilowattuur per jaar, volgens NUON goed voor 3700 huishoudens. Dit resultaat is aanzienlijk hoger dan hiervoor werd vermeld.  Zo’n hoog resultaat is alleen maar mogelijk door een veel hogere waarde van het aantal vol-last-uren te hanteren, te weten ruim 3600 (in plaats van 2200). Dit is erg onrealistisch. Te denken geeft dat NUON elders andere cijfers geeft[4]. De opbrengst is dan geen 13 maar 10 miljoen kilowattuur per jaar en ook het aantal huishoudens is naar rato verlaagd naar 2800. Dit roept de verdenking van nattevingerwerk op. Maar ook dit cijfer is nog steeds aanzienlijk  hoger dan de gangbare aannames.

In mijn vorige pleitte ik voor openbaarheid van gegevens over het rendement van reeds gerealiseerde zonneparken. Dit pleidooi kan in het geval van windmolens alleen maar met klem worden herhaald. Dit geldt eens te meer daar onder het publiek doorgaans meer weerstand leeft bij de bouw van windmolens. Majoreren van opbrengstcijfers met de bedoeling het draagvlak voor windenergie te vergroten, moet te allen tijde worden voorkomen. Het lijkt me wenselijk dat voorstellen voor nieuwe windparken refereren aan een benchmark – een reeds gerealiseerd project – en verwachte afwijkingen in vermogen en opbrengst van windmolens daaraan relateren.

[1]https://www.deingenieur.nl/artikel/krachtigste-windturbine-voor-kust-schotland

[2]https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/duurzame-energie-opwekken/windenergie-op-land/techniek/opbrengst

[3]https://www.nuon.com/activiteiten/windenergie/windpark-wieringermeer/

[4]http://www.windparkwieringermeer.nl/wat/#51

Zijn windmolens rechts en zonnepanelen links?

11 Mei

Unknown-1

Dat de energietransitie serieus is, dringt door tot steeds meer mensen. De versnelde afbouw van de aardgaswinning heeft daarbij de rol van wake-up call gespeeld[1].

Om in Nederland alle fossiele brandstoffen te vervangen door duurzame energie, zijn nodig: 75.000 windturbines (vermogen 3 megawatt; opbrengst 6,5 miljoen kWh per stuk)[2]of 3000 km2 zonnepanelen (bij een vermogen van 300 wattpiek per jaar per paneel van 1,7 m2), of uiteraard een combinatie hiervan.

Bovendien is opslagcapaciteit vereist voor de vraag naar energie in piekperioden. De voornoemde aantallen vallen lager uit als een deel van de gewonnen energie gebruikt wordt voor warmtepompen en de productie van waterstof.

Er kan geen plan ter tafel komen voor met name de opwekking van windenergie of een verontruste groep burgers heeft allerlei bezwaren: huizen verliezen hun waarde, er dreigen allerlei ziekten, de horizon vervuilt[3]. Bij zonnepanelen worden veel minder bezwaren gehoord. Dit bevreemdt niet; tot dusver konden deze op daken, schuren en fabriekshallen tamelijk onzichtbaar worden weggestopt. Daar is nog veel meer ruimte. De  vraag naar zonnepanelen zal echter dermate stijgen dat – net als in Duitsland – aanleg van grootschalige zonneparken noodzakelijk is. Daar zijn uiteraard evenzeer esthetische bezwaren tegen te bedenken.

Vooral de linkerzijde van het politieke spectrum lijkt een voorkeur te hebben voor zonneparken.

screenshot4

Animatie van zonnepark van 1 km

Ik heb eens goed gekeken naar een voorstel van D’66 om in de nabijheid van Utrecht een grootschalig zonnepark aan te leggen in plaats van de door de gemeente voorgestelde plaatsing van windmolens[4]. Het gaat daarbij om 125.000 zonnepanelen op een oppervlak van 25 ha. Wat daarbij vooral opvalt, is het gemak waarmee men de cijfers naar zijn hand weet te zetten.

Twee voorbeelden, zonder diep in te gaan op de berekeningswijze.

In de eerste plaats zijn 5000 zonnepanelen per hectare erg veel. Het kan wel, maar dat moeten ze vrijwel vlak op de grond komen te liggen (oost-west opstelling). Het becijferde rendement wordt dan zeker niet gehaald. Dat rendement wordt alleen behaald als de panelen op stellages haaks op de zon worden gezet (zuid opstelling). Dit leidt tot minder panelen per ha. omdat de afstand tussen deze stellages vrij groot moet. De panelen staan anders een deel van de dag in elkaars schaduw en presteren dan aanzienlijk slechter.

screenshot2

Oost-west opstelling

In de tweede plaats gaat men ervan uit dat 10.000 huishoudens van stroom kunnen worden voorzien. Dat gaat al niet lukken vanwege de lagere opbrengst. Bij de veronderstelde opbrengst van 26.000.000 kilowatt per jaar betekent dit dat per huishouden 2600 kilowatt beschikbaar is. De energiebehoefte van een gemiddeld huishouden is echter 3250 – 3500 kilowattuur per jaar.

screenshot3

Zuid-opstelling

In Nederland zijn talloze plannen voor windparken of zonneweiden in voorbereiding en elk voorziet in een berekening van de verwachte opbrengst[5]. Geen van deze plannen majoreert zo extreem als het plan van D’66 in Utrecht.

Wat wel opvalt zijn de grote verschillen tussen de aannames waarop men zijn berekening baseert:

Het rendement van de zonnepanelen, het aantal panelen per ha, het aantal huishoudens dat kan worden bediend. Daarnaast worden voortdurend vermogen (in piekwatt) en opbrengst (in kilowattuur) verwisseld.

Het onderliggende probleem is het nagenoeg afwezig zijn van vergelijkbare gegevens over de feitelijke stroomproductie van bestaande zonneparken en windmolens. Er is een studie, verricht door een dochter van de Universiteit van Wageningen met een ontnuchterend resultaat[6]: Een ha. levert energie voor 150 huishoudens bij de gunstigste opstelling en de best presterende panelen.  Er is drie achtereenvolgende jaren gemeten met verschillende typen zonnepanelen en opstellingen.

screenshot

Proefopstelling onderzoek Universiteit Wageningen

Het belangrijkste bezwaar tegen deze studie is dat het resultaat berust op extrapolatie. Er is berekend dat bij de gekozen opstelling 2000 panelen per ha mogelijk zijn.  Deze opstelling zelf, laat staan opstellingen met meer panelen, zijn nooit getest. In elk geval contrasteert het aantal van 2000 panelen wel erg met alle andere plannen in uitvoering en zeker met de 5000 panelen per ha. waar D’66 in Utrecht van uitgaat. Overigens constateert deze studie ook dat plaatsing van zonnepanelen lucratiever kan zijn dan voortzetten van het agrarische bedrijf.

Het bovenstaande leidt tot twee conclusies:

  1. Er is dringend behoefte aan feitelijke gegevens over het gerealiseerde rendement van zonne- en windparken, uitgaande van verschillende aantallen en opstellingen van panelen.
  2. Discussie over de keuze tussen zonnepanelen of windmolens is niet aan de orde. Beide manieren om energie op te wekken zijn complementair (zie afbeelding) en ze moeten beide maximaal worden gebruikt[7].

grafiek_zonnepanelen_winddelen

De centrale vraag is welke zijn qua energieopbrengst de beste en in visueel opzicht de minst slechte plaatsen voor beide typen parken.

Zeker is dat de planvorming een aanzienlijke versnelling behoeft om de hiervoor genoemde aantallen zonnepanelen en windmolens voor 2050 te realiseren.

In mijn volgende blogpost sta ik stil bij de berekening van de opbrengst van windmolens.

 

[1]https://www.expirion.nl/blog-4–waar-halen-we-energie-vandaan-in-toekomst-.html

[2]https://www.windenergie.nl/windenergie-op-land/feiten-en-cijfers

[3]http://www.duurzamebrabanders.nl/blog/2015/02/zonneweide-vergeleken-met-windpark-voor-drenthe/

[4]https://utrecht.d66.nl/content/uploads/sites/3/2014/01/Project-Zonneweide.pdf

[5]https://www.rvo.nl/sites/default/files/2016/09/Grondgebonden%20Zonneparken%20-%20verkenning%20afwegingskadersmetbijlagen.pdf

[6]http://edepot.wur.nl/336567

[7]https://www.windcentrale.nl/blog/windmolens-of-zonnepanelen/

Circulair bouwen

1 Mei

Trash_mountain Jim Henderson licenced under CC Demolition waste – Photo Jim Henderson Licensed under Creative Commons

In 2050 kan het begrip afval uit ons woordenboek worden geschrapt. Ook de Nederlandse overheid vindt dat de Nederlandse economie dan circulair moet zijn[1]. In essentie betekent dit dat alle grondstoffen oneindig hergebruikt worden. Dat geldt ook voor brandstoffen.

De Nederlandse regering heeft met een 325 partijen een grondstoffen akkoord gesloten waarin is afgesproken dat er in 2030 al 50% minder primaire grondstoffen worden gebruikt.

Werpt deze afspraak al zichtbare resultaten af?

In een onderzoek van Duurzaam bedrijfsleven[2] antwoordde 38,7 procent instemmend, maar maakte wel de kanttekening dat het vooralsnog om minimale stappen gaat.

Opinie

Jan Jonker, hoogleraar bedrijfskunde aan de Radboud Universiteit, antwoord met stelligheid Nee… we denken nog helemaal niet in kringlopen.  Instituties, van juridisch tot fiscaal, zijn volledig op de lineaire economie ingesteld.

Het begin is er. Amsterdam, maar ook andere steden geven duidelijke voorbeelden.

In 2015 heeft de gemeente Amsterdam, kansen voor circulaire economie verkend en vastgelegd in Amsterdam Circulair: Visie en routekaart voor stad en regio[3]. Op basis hiervan zijn vele tientallen projecten gestart, zij het meestal kleinschalig en vanuit de terechte gedachtegang van leren door te doen.

In 2017 zijn alle projecten geëvalueerd. Het rapport Amsterdam circulair; evaluatie en handelingsperspectieven[4]bevat de evaluatie van deze projectenen de conclusie is dat er bewijskracht is geleverd dat een circulaire economie realistisch en aanpak rendabel is.

Voor deze aanpak – via kleinschalige initiatieven werken aan grootstedelijke doelen – heeft de stad overigens de World Smart City Award voor circulaire economie gewonnen.

Maar ook voor Amsterdam geldt dat binnen de kortst mogelijk tijd een wezenlijke opschaling moet plaatsvinden. Hieronder staan de uitgangspunten die de gemeente Amsterdam hanteert bij de ontwikkeling van een circulaire economie.

screenshot 2In het navolgende concentreer ik me op de bouwsector, te weten alle activiteiten die te maken hebben met de sloop, renovatie, transformatie en nieuwbouw van gebouwen, grond- wegen- en waterbouw (GWW) en de openbare ruimte. De impact is groot; gebouwen zijn voor ruim 50% verantwoordelijk voor het totale materiaalgebruik op aarde, waaronder waardevolle typen zoals staal, koper, aluminium en zink. In Nederland komt 25% van de CO2-emissies en 40% van het energiegebruik van de gebouwde omgeving. Circulair bouwen is het zodanig ontwerpen, construeren en slopen van een gebouw dat naast het hoogwaardig inzetten en hergebruiken van materialen, ook duurzaamheidsambities op het gebied van energie, water, en biodiversiteit en ecosystemen worden meegenomen (Roadmap circulaire grondafgifte).

Circulair bouwen gaat dus niet alleen om het gebouw zelf, maar ook om de omgeving waarin het komt te staan.

De bouwsector loopt niet voorop op het gebied van innovatie, maar uit oogpunt van opschalen van circulair handelen is deze sector van groot belang.  Alleen al de metropoolregio Amsterdam wil 250.000 nieuwe woningen op een circulaire wijze bouwen voor 2050.

De evaluatie van de projecten die zijn opgezet naar aanleiding van het plan Amsterdam Circulair heeft een aantal inzichten opgeleverd die bij deze opschaling van belang zijn. De belangrijkste is de rol van gronduitgifte en bouwvergunning. Daar ga ik als laatste op in. De andere zijn verankering in de ruimtelijke ordening en urban mining.

Verankering in ruimtelijke ordening

In de ruimtelijke ordening gaan omgevingsplannen een cruciale rol spelen. Zij moeten daarom op de kortst mogelijke termijn uitsluitend van circulair bouwen uitgaan. Alleen dan kan er na 2050 sprake zijn van 100% hergebruik van componenten bij sloop. Maar nog meer dan nieuwbouw liggen de grootste opgaven bij renovatie van bestaande huizen en gebouwen. Daarom moeten hier eveneens circulaire doelen gelden. Bij de wijze waarop dit gebeurt is dialoog met de bewoners, evenals het veiligstellen van hun langetermijnperspectief van wezenlijk belang. Een interessant voorbeeld is de transformatie van een oud kantoor naar een all-electricHotel Westerparkte Amsterdam, waarbij uitsluitend duurzame materialen zijn gebruikt[5].

Hotel Westerpark-all electric

Conscious Hotel Westerpark. Foto Bart Koetsier

Urban mining

In bestaande gebouwen bevinden zich talloze waardevolle materialen. Het is lastig om deze in bruikbare vorm bij sloop veilig te stellen vanwege de niet-circulaire manier van bouwen in het verleden. Door gericht te werk te gaan is een groter percentage van kostbare materialen te ‘redden’. Gesproken wordt dan van urban mining. Het grootste probleem is echter dat vooralsnog hergebruikte materialen vaak duurder zijn dan nieuwe. Daarom is ook een circulaire economie gediend met een verschuiving van belasting op arbeid naar belasting op grondstoffen.

De rol van gronduitgifte en bouwvergunning

Het is vooral op dit gebied dat de gemeente Amsterdam een reuzensprong heeft gemaakt. Een belangrijke rol daarbij speelt de Roadmap Circulaire gronduitgifte[6]. Uitgaande van de hiervoor weergegeven definitie van circulair bouwen, zijn er bij de beoordeling van nieuwe bouwprojecten vijf thema’s aan de orde. Gebruik van materialen, water, energie, ecosystemen alsmede veerkracht en adaptiviteit. Bij elk van deze thema’s speelt een aantal principes, zoals

  • De vermindering van het gebruik van materialen, water en energie;
  • De mate van hergebruik en de wijze waarop toekomstig hergebruik wordt geborgd;
  • De duurzame productie en inkoop van alle benodigde materialen;
  • Verstandig management, bijvoorbeeld een volledige registratie van alle gebruikte componenten.

Toepassing van deze criteria op de vijf thema’s levert 32 criteria op. In concrete gevallen wordt een selectie van deze criteria gemaakt. Deze is mede afhankelijk van de vraag of het om gronduitgifte, een bouwvergunning of een renovatie gaat, maar ook van waar het bouwen plaats zal vinden. Voor een onbebouwd terrein achteraf gelden andere eisen dan voor een centrumlocatie in een monumentale omgeving. Voor het verlenen van een bouwvergunning zal vaak een kwantitatieve onderbouwing worden gevraagd. Bij gronduitgifte volstaat een kwalitatieve onderbouwing.

Projecten

De gemeente Amsterdam heeft de afgelopen jaren bij vier tenders voor gronduitgifte circulaire criteria gehanteerd: Buiksloterham, Centrumeiland, de Zuidas (alle drie woningbouw) en Sloterdijk (detailhandel). Op de Zuidas is in december 2017 de eerste circulaire gronduitgifte afgerond. Bij de toekenning speelden circulaire criteria voor 30% mee in het eindoordeel.

Zuidas Team-V-Architectuur foto Zwartlicht

Zuidas, team V Architectuur. Foto: Zwartlicht

De winnaar is AM, in samenwerking met Team V Architecten. Zij combineerden in hun project Cross overruim 250 woningen met kantoren, werkruimte kleine bedrijven en plek voor creatieve starters. Het project kent geen vaste verdeling tussen woningen en kantoren. Hergebruik bij toekomstige sloop wordt vergemakkelijkt door een materialenpaspoort en bouwen met droge verbindingen, wat demonteren in de toekomst makkelijk.  Scheidingswanden zijn gemaakt van restgips en de gevel bestaat uit hergebruikte bakstenen).

Een goed voorbeeld op het gebied van renovatie is de herhuisvesting van het kantoor van Alliander in Duiven. De onderstaande video toont het proces van totstandkoming van dit opmerkelijke gebouw.

Noodzaak tot lerend organiseren

De gedetailleerde uitwerking van de 32 criteria door het uitschrijven van de tender beslaan ruim 40 dichtbedrukte pagina’s. De indieners van een tender mogen ook op een uitvoerige instructie rekenen. Desondanks kan niet van potentiële indieners verwacht mag worden dat zij routinematig kunnen voldoen aan hetgeen wordt gevraagd. De gemeente heeft vele honderden uren geïnvesteerd in het opstellen van de eisen en daarmee een enorme voorsprong verworven.  Het zou daarom toe te juichen zijn als de gemeente Amsterdam haar kennis deelt. Iets soortgelijks geldt trouwens ook voor andere voorhoede-gemeenten zoals Utrecht[7].

Ik pleit daarom dat gemeenten ‘pre-competitieve’ samenwerking aangaan met fabrikanten, kennisinstellingen, opdrachtgevers en bouwpartners met als doel innovatie ten behoeve van het circulaire bouwproces. Daarbij wordt gedacht aan standaardisering van de maatvoering van componenten (bijvoorbeeld ramen, kozijnen, vloerdelen) en het ‘revalideren’ van ‘gesloopte’ componenten met behoud van een zo hoog mogelijke waarde. In Zwolle wordt op een andere manier samengewerkt: gemeente, woningbouwcorporaties en bouwbedrijven hebben daar een Conciliumgevormd, dat zich ten doel stelt de reeds voorziene bouw van huizen aanzienlijk uit te breiden en daarbij circulaire principes te gebruiken[8]

Circulariteit vraagt om het sluiten van kringlopen. Samenwerking binnen de keten is daar een van.

 

[1]https://www.rijksoverheid.nl/documenten/rapporten/2016/09/14/bijlage-1-nederland-circulair-in-20

[2]https://www.duurzaambedrijfsleven.nl/circulaire-economie/27945/de-stand-in-het-land-zijn-we-al-een-beetje-circulair

[3]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-0/

[4]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/amsterdam-circulair-1/

[5]https://www.duurzaamgebouwd.nl/artikel/20180417-duurzaam-amsterdams-hotel-westerpark-geopend

[6]https://www.amsterdam.nl/wonen-leefomgeving/duurzaam-amsterdam/publicaties-duurzaam/roadmap-circulaire/

[7]https://www.duurzaambedrijfsleven.nl/circulaire-economie/27459/5-ontwikkelingen-die-nodig-zijn-om-circulaire-bouw-van-de-grond-te-krijgen

[8]http://www.stadszaken.nl/ruimte/wonen/1485/oplossing-bouwimpasse-komt-uit-zwolle/

 

De energietransitie is niet gebaat met spierballentaal

16 Apr

Duurzaamheid - carbon pollution_1
Over een paar jaar zal mogelijk blijken dan VVD-minister Wiebes de belangrijkste game changer was in de ontwikkeling naar een duurzame economie. Tegelijkertijd weten we nog weinig over hoe de economie gaat uitzien. Er zijn maar twee ‘zekerheden’: Binnen een jaar of 30 is duurzame brandstof het nieuwe normaal en is productie afhankelijk van opnieuw te gebruiken materalen.

Veel vragen zijn nu nog niet te beantwoorden.

Het gaat dan onder andere om wat dan de belangrijkste energiebronnen zijn, hier en elders ter wereld. wat de prijs van energie is en wat een circulaire economie betekent voor onze welvaart.

screenshot kopie

We gaan een transitietraject in waarin zich voortdurend nieuwe mogelijkheden voordoen of voor mogelijk gehouden oplossingen afvallen. Overheden en bedrijven moeten – uitgaande van deze onzekerheden – andersoortige transitieplannen maken dan de rationeel aandoende verandertrajecten waarvan men zich thans bij voorkeur bedient. In essentie betekent dit:

  • Veel opties open te houden.
  • Uiteenlopende alternatieven gelijktijdig beproeven.
  • Burgers, bedrijven en instellingen oproepen hetzelfde te doen.
  • Alternatieven voortdurend te evalueren.

En misschien wel het belangrijkste:

  • Communiceren, communiceren en nog eens communiceren.

Wat in elk geval niet moet gebeuren, is één oplossing verheffen tot heilige graal. De ferme taal van de installatiebranche, de fabrikanten van cv-installaties, milieuorganisaties en de energiesector die oproepen tot een verbod op de verkoop van cv-ketels is hier een voorbeeld van.

gasvlam

In plaats daarvan moeten met gezwinde spoed zo veel mogelijk alternatieven worden onderzocht, beproefd, ingevoerd en gefaciliteerd. Alternatieven die op korte termijn zoden aan de dijk zetten verdienen extra prioriteit. Bijvoorbeeld grootschalig gebruik van aardwarmte om grootgebruikers van het gas af te krijgen. Slechts 10% van het Nederlandse aardgas is bestemd voor huishoudelijk gebruik en daarom is het zinloos miljoenen huishoudens nu al op hoge kosten te jagen door onvoldoende uitontwikkelde alternatieven als (hybride) warmtepompen en infraroodkachels te propageren. Faciliteer huishoudens die dat nu al willen en evalueer samen met hen de resultaten.

Communiceren, communiceren en nog eens communiceren betekent in de praktijk:

  • Voorlichten over de noodzaak van de op handen zijnde energietransitie.
  • Eerlijk zijn over alle onzekerheden; niemand weet hoe veel gas, tegen welke prijs en voor hoe lang aangekocht kan worden in het buitenland als de kraan in Groningen definitief dicht gaat.
  • Informeren op maat (bijvoorbeeld door wijkgebonden teams) over wat de betrokkenen individueel te wachten staat en welke (keuze)opties er zijn.
  • Adviseren van bewoners wat ze al nu kunnen doen, bijvoorbeeld isolatie verbeteren en zonnepanelen aanschaffen.

Foto Smaack CC

De energietransitie is een gigantisch proces, dat zich hoe dan ook geleidelijk zal voltrekken. Zeker is dat er in de komende jaren elk jaar minder gas beschikbaar is en gespreid over een periode van 15 –  20 jaar de meeste Nederlanders overstappen op een alternatieve energiebron.

Wat vooral voorkomen moet worden is symbolisch beleid.

Een voorbeeld van symbolisch beleid is de discussie of de Haagse regeringsgebouwen van het gas af moeten. Er zijn immers veel argumenten om het Binnenhof en andere monumentale gebouwen en stadsdelen aangesloten te houden op een (op termijn) duurzame (bio)gasvoorziening. Dit om ingrijpende en dure aanpassingen te voorkomen.

Het is onverstandig om burgers te dwingen keuzen te maken, zo lang er nog diverse opties open zijn. Ik zou zeggen, vervang je cv-ketel nog niet als dat niet hoeft. Als dat wel moet, bijvoorbeeld omdat de oude stuk is, huur dan een nieuwe.

Ik zelf hoop binnen drie jaar all electric te gaan, liefst helemaal op groene stroom. Ik kijk uit naar dat moment en heb behoefte aan voorlichting op maat, state-of-the-art apparatuur, enige subsidie maar niet aan spierballentaal.