Inleiding bij een nieuwe reeks

Het begrip ‘smart city’ roept gemengde gevoelens op. Ergens tussen utopie en dystopia. Een beter uitgangspunt voor stedelijke ontwikkeling is de wens een humane stad te zijn. Technologie kan daarbij helpen. In 18 korte essays onderzoek ik hoe.

Advertenties

De ontwikkeling naar een humane stad gebeurt niet vanzelf: Het is een keuze die veel inspanning vergt. Als deze keuze eenmaal is gemaakt, ligt het ‘slimme’ gebruik van technologie voor de hand. Immers, welke stad wil dom zijn? Slim (smart) doelt dan op de keuze van technologische hulpmiddelen bij de realisering van humane principes.

Daarom is het leidmotief van deze serie Steden in de toekomst: Vanzelfsprekend smart. Humaan als keuze.

Steden van de toekomst

Het aandeel van mensen dat in steden woont groeit gestaag. Deze concentratie heeft ook gevolgen voor de minder of onbevolkte delen van de wereld en de oceanen. Steden kunnen niet bestaan ​​zonder de rest van de wereld, maar het evenwicht is op veel manieren verstoord. Kiezen voor een humane stad betekent ook ontwikkelen van een gelijkwaardige relatie tussen de stad en haar omgeving.

Humaan als keuze

De ontwikkeling van een humane stad vereist de gelijktijdige toepassing van drie principes: duurzaamheid, rechtvaardigheid en leefbaarheid.

Duurzaamheid:

Zinvol werk en een eerlijk inkomen voor iedereen nu, wat niet ten koste gaat van de welvaart van de aarde en de natuur of van toekomstige generaties.

Rechtvaardigheid:

Gelijke kansen, vrijheid, democratie, veiligheid, rechtsbescherming en respect voor diversiteit in de manier waarop mensen samenleven.

Leefbaarheid:

De bijdrage van de door de mens gemaakte omgeving, inclusief werk, huisvesting, sociale contacten, onderwijs, zorg en andere voorzieningen aan de groei van competenties en geluk.

Binnen elk van deze principes moeten keuzes worden gemaakt en de drie principes als geheel moeten in evenwicht zijn. Daarom is de ontwikkeling van een humane stad een groeiproces, waaraan velen bijdragen.

Smart als vanzelfsprekendheid

Technologie heeft geen intrinsieke waarde. Bestaande technologieën komen voort uit het nastreven van politieke doelen, commerciële belangen en uit wetenschappelijke ontdekkingen. Hun impact is zowel destructief als constructief gebleken. Lang niet iedereen heeft er in dezelfde mate van geprofiteerd.

Deze reeks essays geeft vele voorbeelden van bruikbare technologieën, in het besef dat een deel van de technologieën die bijdragen aan de ontwikkeling van humane steden nog moet worden ontwikkeld.

Stedelijke uitdagingen

Stedelijk beleid staat ​​voor een dubbele uitdaging: zorgdragen voor een humane ontwikkeling en daarbij slimme hulpmiddelen kiezen, ontwikkelen en inzetten. De 18 essays in deze reeks vertegenwoordigen elk een van deze uitdagingen (figuur hieronder) en ze monden uit in acties voor om deze op te pakken.

De eerste aflevering heet ‘Gezonde steden’ en verschijnt komende week.

Afvang en opslag van CO2 (CCS): Het stiefkind van de energietransitie

De komende decennia worden wereldwijd nog miljarden tonnen CO2-equivalenten uitgestoten ondanks de overgang naar schone energie. Hoe zeer ligt het dan voor de hand om deze schadelijke gassen
op te vangen en op te slaan, of te wel CCS (carbon capture and storage)?

Direct air capture technology – Foto: Carbon Engineering

Nee, zegt een aantal milieuactivisten. Geld dat je investeert in CCS kun je niet meer gebruiken voor onderzoek naar schone energiebronnen. Het zal bovendien de industrie ervan weerhouden om alternatieven voor het gebruik van fossiele brandstoffen te zoeken. Ik vind dat de vermindering van CO2 in de dampkring een hoger doel is dan stoppen met het gebruik van fossiele brandstoffen. Maar zoals nog zal blijken, hebben we die keuze niet eens. 

Tot nu toe zijn inspanningen op dit het gebied van CCS beperkt en dat geldt – wereldwijd – ook voor onderzoek op dit gebied. De techniek zelf is overigens niet nieuw, wel de schaal waarop deze toegepast zou moeten worden.

Het meest recente rapport[2]van het Intergovernmental Panel on Climate Change (IPCC) benadrukt dat CCS, ook wel ‘negatieve emissie’ genoemd, tot ver in de 22steeeuw onafwendbaarder is. Dit náást alle tot nu toe voorgenomen inspanningen om de uitstoot van broeikastgassen ze veel mogelijk te beperken. 

Bij de berekening van het vereiste tempo van de vermindering van CO2-emissie, is ervan uitgegaan dat er tot 2050 nog tussen de 600 en 1200 miljard ton aan koolstof in de atmosfeer terecht zal komen (afhankelijk van 1,5oC dan wel 2oC opwarming van de aarde). Het gevolg is dat zich in 2050 zo’n gigantische hoeveelheid CO2in de atmosfeer heeft opgehoopt dat de opwarming van de aarde nog decennia gewoon doorgaat. Met het afvangen én verwijderen van CO2 kan dus eigenlijk geen dag worden gewacht. 

De noodzaak van negatieve emissies – Afbeelding World Resource Institute

Ook het afvangen van CO2 zal na 2050 noodzakelijk zijn omdat het zeer onwaarschijnlijk is dat tegen die tijd voor alle CO2-bronnen alternatieven beschikbaar zullen zijn. Uiteindelijk zal er in de periode vanaf heden tot 2100 élk jaar 8 miljard ton af- en opgevangen en opgeslagen moeten worden.

Eerder al had het Planbureau voor de Leefomgeving (CPL) al uitgerekend, dat de energietransitie een stuk goedkoper is bij een maximale inzet van CCS én van biomassa. Het CPL pleitte er eveneens voor géén middelen ongebruikt te laten[3]

De kosten van verschillende varianten beperking CO2-uitstoot – Afbeelding Planbureau voor de leefomgeving

Het Ministerie van Economische Zaken en Klimaat heeft de opdracht verstrekt aan onder andere De Gemeynt en CE Delft om alle argumenten voor en tegen CCS te onderzoeken en tot een afweging te komen, uitmondend in een ‘routekaart’ als basis voor het afvangen van CCS[4]. De verwijdering van CO2 uit de lucht is daarbij nog niet aan de orde. 

Het Ministerie heeft aan de makers van dit rapport de boodschap meegegeven dat de toepassing van CCS gericht zal zijn op de industrie, dat er alleen opslag onder zee zal plaatsvinden en dat er nog geen rekening wordt gehouden met de verkoop en het gebruik van CO2.

CCS wereldwijd

Voordat ik op dit voor ons land belangrijke en waarschijnlijk toonaangevende rapport inga, sta ik stil bij wat wereldwijd, en met name in de VS, in wetenschappelijke kringen over het afvangen, verwijderen en opslaan van CO2wordt gezegd. Dit gaat namelijk veel verder.

Voor het verwijderen van CO2 worden in grote lijnen vier methoden onderscheiden[5]

Alternatieve methoden voor CCS – Afbeelding: World Resources Institute

De eerste methode sluit aan bij de verwijdering van CO2 bij de bron, maar de aandacht gaat daarbij vooral uit naar het afvangen van CO2 bij de verwerking van biomassa (BECCS; bioenergy with carbon capture and storage). Vermoedelijk, omdat er in de VS veel meer biomassa is en op verantwoorde wijze kan worden geproduceerd. 

In de tweede plaats krijgen natuurlijke methoden om CO2 uit de lucht te halen veel aandacht, zoals een reusachtige uitbreiding van het areaal bos en het houden van vee in bisachtige gebieden. 

In de derde plaats vindt onderzoek plaats naar de rechtstreekse verwijdering van CO2 uit de lucht (DACS: direct air capture with storage). 

In de vierde plaats zijn er sterk innovatieve technieken in ontwikkeling zoals als het kunstmatig produceren en ondergronds opslaan van houtskool, het kweken van planten die zeer veel CO2 kunnen opslaan, ‘verstenen’ van CO2 en het opvangen van CO2 uit de oceanen om aldus hun absorptievermogen van CO2 uit de licht te vergroten.

CCS in Nederland

De onderstaande afbeelding toont in welke typen bedrijven CCS een rol kan gaan spelen. In alle bedrijven geldt dat er voorlopig nog geen alternatieven zijn. De onder groep II vermelde activiteiten zullen in de komende decennia afnemen dan wel geheel verdwijnen.

Primaire bronnen voor de inzet van CCS – Afbeelding CE Delft

De beschikbaarheid van CCS kan dit proces mogelijk vertragen, maar met een vergunningenstelsel valt dit relatief eenvoudig in de hand te houden.

Tot op heden zijn er nog weinig activiteiten die op termijn tot een grootschalig gebruik van CCS zullen leiden. Geen enkele commerciële partij durft het aan om met de ontwikkeling van de vereiste transport- en opslaginfrastructuur te beginnen.  Onder deze omstandigheden ligt het voor de hand dat de overheid een initiërende rol op zich neemt, bijvoorbeeld door deze activiteiten onder te brengen in een vooralsnog voor 100% bekostigde maatschappelijke onderneming.

Duidelijk is dat we zowel het afvangen en opslaan van koolstof en de beperking van de uitstoot van CO2 beide voortvarend moeten aanpakken.


[1]Met CO2-equivalenten is bedoeld alle vormen van broeikasgassen.

[2]https://www.ipcc.ch/sr15/

[3]Ros en Daniels Verkenning klimaatdoelen, PBL 2017. Downloaden: https://www.pbl.nl/publicaties/verkenning-van-klimaatdoelen-van-lange-termijn-beelden-naar-korte-termijn-actie

[4]Hans Warmenhoven, Margriet Kuijper, Jan Paul van Soest, Harry Croezen, en Nanda Gilden: Routekaart CCS: CO2-afvang en -opslag, een ongemakkelijk maar onmisbaar onderdeel van de energietransitieDit rapport is in opdracht van het Ministerie van Economische Zaken en Klimaat.Downloaden: https://www.rijksoverheid.nl/documenten/publicaties/2018/03/05/routekaart-ccs

[5]James Mulligan, Gretchen Ellison, Kelly Levin, and Colin Mccormick: Technological carbon removal in the United States World resource Institute 2018 https://wriorg.s3.amazonaws.com/s3fs-public/technological-carbon-removal-united-states_0.pdf?_ga=2.172840227.1618072385.1551126518-832317363.1551126518

De aarde: Onuitputtelijke bron van schone energie

Aardwarmte speelt een grote rol in de plannen van Amsterdam, Nijmegen en menige andere gemeente om in 2040 CO2-emissievrij te zijn. Er is nog heel veel werk te doen voordat dit doel is bereikt.

Aardwarmte bij kwekerij Zeurniet in Honselersdijk. 

We lezen veel over de snelle groei van zonne- en windenergie.Publicaties over aardwarmte (geothermie) waren tot voor kort schaars. Niet vreemd want het aandeel van aardwarmte in het wereldwijze energiegebruik in 2017 is (afgerond) 0%, tegen 81% fossiele bronnen[1]. Maar verandering is in zicht. Enige tijd geleden schreef ik over de winning van ondiepe aardwarmte (tussen 250 – 750 m.). In deze post komt het hele scala van mogelijkheden om aardwarmte te winnen aan de orde.

In Nederland hebben tuinbouwondernemers in 2007 de grondslag gelegd voor het ontstaan van een geothermiesector. Er zijn vanaf dat jaar 35 putten geboord, waarvan er 14 actief zijn. 

De totale jaarlijkse vraag naar warmte in Nederland bedraagt thans ongeveer 960 petajoule. Deze zal vermoedelijk dalen naar 930 petajoule in 2030 en naar 870 petajoule in 2050. Deze daling van de vraag komt door een efficiënter gebruik van warmte, betere isolatie en dalende bevolkingsgroei. Hier staat tegenover het groeiende gebruik van elektriciteit voor vervoer. De bijdrage van geothermie aan de huidige vraag naar warmte is slechts 3 petajoule.

Ongeveer de helft van de vraag naar warmte is afkomstig van de gebouwde omgeving (verwarming en warm kraanwater). Aardgas, biomassa en restwarmte zijn thans de belangrijkste energiebronnen. In de toekomst moet geothermie de plaats van het aardgas voor een belangrijk deel overnemen.

Doublet met productie- en infiltratieput. Afbeelding afkomstig uit: Stappenplan geothermie voor de glastuinbouw, december 2013

Wat is aardwarmte?

Geothermie, onttrekt warmte aan aardlagen tussen 250 en 5000 meter diep (zie afbeelding). Hier bevindt zich warm water van 15 tot 125oC. Dit water kan wel 150 miljoen jaar oud zijn en het is zout door de erin opgeloste mineralen. Het water wordt opgepompt met behulp van een productieput, staat zijn warmte af via een warmtewisselaar en het afgekoelde water verdwijnt weer via een injectieput in de bodem, op enige afstand van de plaats waar het vandaan komt (Zie afbeelding) Hier warmt het in ongeveer een jaar tijd weer op. Beide putten samen heten een doublet.  

Reserves

Jos Limberger. Foto Universiteit Utrecht

Jos Limberger is onlangs aan de Universiteit van Utrecht gepromoveerd op de ontwikkeling van geothermie[2]. Hij berekent dat de jaarlijks winbare hoeveelheid aardwarmte in de orde van grootte ligt van het totale jaarlijkse mondiale energieverbruik. Hieraan is echter een aantal mitsen en maren verbonden. Het opzetten van een grootschalig productiesysteem vereist grote investeringen. Deze zijn vergelijkbaar met de aardoliewinning, waarvan de baten echter veel hoger zijn. De productie moet (in tegenstelling tot de aardoliewinning) over een relatief groot oppervlak worden gespreid, om het water weer op temperatuur te laten komen. Tegelijkertijd moeten de putten dichtbij de plaats liggen waar de warmte wordt gebruikt.

Al met al zijn de kosten voor de ontwikkeling van boorlocaties op dit moment nog te groot voor economisch verantwoorde exploitatie.

Een meer grootschalige aanpak kan hier verandering in brengen. Dit lijkt te gaan gebeuren.

Het onderstaande filmpje geeft een goed beeld van de winning van aardwarmte.

Wereldwijd hebben 49 landen in de periode 2014 – 2017 samen ongeveer $20 miljard geïnvesteerd in geothermie.  Naar verhoging niet veel. Shell besteedde in die periode $25 miljard aan het zoeken naar nieuwe olievelden. Nederland investeert naar verhouding veel: in de eerste helft van 2018 alleen al is er bijna een half miljard dollar toegezegd aan subsidie. 

Onderzoek in Nederland

Het onderzoek in Nederland is het afgelopen jaar opgeschaald: Het betreft vooral onderzoek naar de mogelijkheden van ultradiepe geothermie[3]. Dit mede omdat vanwege de hoge temperatuur (120 – 250C.) Deze vorm van geothermie ook relevant is voor de industrie, die een warmtebehoefte heeft van 400 petajoule). 

Aan dit grootschalig onderzoek doen mee Engie, de Universiteit Utrecht, het Universitair Medisch Centrum Utrecht, de Hogeschool Utrecht en de Stichting Kantorenpark Rijnsweerd. 

Verder doet Energie Beheer Nederland (EBN) seismisch onderzoek om vast te stellen waar en op welke diepte zich winbare aardwarmte bevindt en bovendien of de bodemgesteldheid winning mogelijk maakt[4].   

Risico’s

Bij het boren naar aardwarmte, doet zich een beperkt aantal risico’s voor, dat bij in acht neming van grote zorgvuldigheid en het gebruik van de juiste technieken en apparatuur tot een minimum teruggebracht kunnen worden. 

Door bij het boren rekening te houden met natuurlijke breuken in de ondergrond is de kans op een aardbeving klein.

Dankzij een speciale constructie van de buizen kan er geen water van de ene aardlaag in de andere terecht komt. 

Van groot belang verder is dat bij de productie van aardwarmte geen materie aan de ondergrond wordt onttrokken: De warmte wordt met behulp van een warmtewisselaar gewonnen en het afgekoelde water wordt weer teruggepompt. Hierdoor blijft de druk onveranderd en is de kans op bodemdaling gering.

Pionier stadium

De Staatstoezicht voor de Mijnen, tevens belast met geothermie, is tamelijk kritisch over de manier waarop de winning en de exploitatie van aardwarmte tot dusver in Nederland heeft plaatsgevonden. Hiervan is in 2017 uitvoerig verslag gedaan in het rapport De Staat van de geothermie in Nederland[5].

Het rapport schrijft dat milieu- en veiligheidsrisico’s onvoldoende worden onderkend, wet- en regelgeving niet goed genoeg wordt nageleefd en er sprake is van een zwak ontwikkelde veiligheidscultuur bij initiatiefnemers en hun aannemers. De Raad wijt dat deels aan de kleinschaligheid van de sector, het gebrek aan middelen en onvoldoende deskundig personeel. Dit heeft geleid tot een aantal incidenten.  Zo is er overigens met medeweten van de Raad geboord op plaatsen in Limburg en Brabant die dicht bij breukzones liggen. Door de (verplichte) aanwezigheid van een sensorsysteem werden de overigens lichte aardbevingen die daar het gevolg van waren onmiddellijk opgemerkt, waarna de winning op deze locaties is stilgelegd. Hetzelfde geldt voor boringen in het aardbevingsgebied van Groningen. 

In mei 2018 heeft het Platform Geothermie het Masterplan aardwarmte in Nederland, een brede basis voor een duurzame warmtevoorziening[6]gepubliceerd.

Dit plan moet ertoe leiden dat aardwarmte samen met duurzame restwarmte en biomassa op substantiële wijze gaat bijdragen aan de toekomstige vraag naar warmte. De huidige productie van 3 petajoule neemt dan toe naar 50 petajoule in 2013 en tot meer dan 200 petajoule per jaar in 2050. Van deze 200 petajoule zal ongeveer 40% geleverd zal worden via warmtenetten. Om dit doel te bereiken moet het aantal doubletten groeien van de huidige 14 naar 175 in 2030, en vervolgens naar 700 in 2050. 

Bij de opschaling van het aantal doubletten speelt de aanwezige expertise in de glastuinbouw een grote roi. De ondergrond in het Westland is goed in kaart gebracht. Van de gewenste uitbreiding van 3 naar 50 petajoule in 2030, kan 30 petajoule in de glastuinbouwsector worden gerealiseerd, wat tijd geeft om elders seismisch onderzoek uit te voeren.

Helaas ontbreekt een gespecificeerde begroting. Maar als het geformuleerde doel wordt bereikt, komt de haalbaarheid van de energietransitie een stap dichterbij.


[1]https://goo.gl/KyKPrc

[2]https://www.uu.nl/en/events/phd-defence-thermo-mechanical-characterization-of-the-lithosphere-implications-for-geothermal

[3]https://www.duurzaambedrijfsleven.nl/energie/30487/engie-geothermie?utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+19+November

[4]https://www.duurzaambedrijfsleven.nl/energie/30545/locaties-geothermie?utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+27+November

[5]https://www.sodm.nl/documenten/rapporten/2017/07/13/staat-van-de-sector-geothermie

[6]https://www.geothermie.nl/images/Onderzoeken-en-rapporten/20180529-Masterplan-Aardwarmte-in-Nederland.pdf

Het gevoel van urgentie is totaal weg

Amsterdam wil vanaf 2030 alleen ‘schone’ auto’s toelaten in een deel van de stad. Een noodzakelijke stap om in 2040 geheel CO2-vrij te zijn.

‘Het wordt nooit meer zoals het geweest is’. Dat waren ongeveer de woorden van minister-president Joop den Uyl in 1973, tijdens een toespraak op alle tv-netten. Aanleiding was de oliecrisis. Nier meer autorijden op zondag, benzine op de bon, gebruik openbaar vervoer, gordijnen dicht, kachel lager, trui aan…. Zijn woorden maakten indruk.

Ook in 2015 leek het er even op dat Nederland zich collectief schikte in de noodzaak van een energietransitie.

Bijna alle landen ter wereld hadden toen in Parijs afgesproken om in 2050 de uitstoot van broeikasgas tot nul te beperken. Uiteraard was Nederland van de partij, maar geen televisietoespraak van minister-president Mark Rutte. Toch voelde je dat het menens was. 

Even. De regering zette een groot aantal deskundigen en anderszins betrokkenen aan het werk aan de klimaattafels. Op zich een goede aanpak en deze kwamen er bijna uit

Maar, weer geen televisietoespraak en het bleef stil. Niet overal, enkele steden, waaronder Amsterdam en Nijmegen kwamen met eigen plannen. Amsterdam gaf aan in 2040 al emissie-vrij te willen zijn. 

De regering zwijgt nog steeds.

Dit ondanks gerechtelijke uitspraken in de Urgenda-zaak en berekeningen van het Planbureau voor de leefomgeving. Uit deze laatste bleek dat de voorstellen van de klimaattafels waarschijnlijk niet ver genoeg gaan en de lasten te zeer bij de burgers leggen.  Uit onderzoek blijkt dat het merendeel van de burgers een afwachtende houding aanneemt. Een teken aan de wand is dat partijen die spreken van ‘die klimaatonzin’ massaal stemmen trokken bij de verkiezingen voor de provinciale staten. 

Tot nu toe heeft geen enkele Nederlander ook maar het kleinst denkbare offer hoeven brengen voor het klimaat.

Het is een gemiste kans om de maximumsnelheid op de snelwegen niet te verlagen als een kleine stap in de goede richting. Ook om het gevoel van urgentie aan te wakkeren. Maar de regering zweeg.

Enkele dagen geleden kondigde het bestuur van de gemeente Amsterdam aan om auto’s die CO2 uitstoten in 2030 binnen de ring te verbieden. Overigens was al eerder besloten dat tegen die tijd grote delen van de binnenstad sowieso autovrij of -luw zullen zijn. Iedereen viel over deze aankondiging heen. Eindelijk sprak de regering: ‘Dit gaat te ver’ en de D66 staatsecretaris gaat proberen de maatregel te verbieden.

Hoezo te ver? Amsterdam wil in 2040 emissievrij te zijn. Dan moeten ze tien jaar eerder toch wel een eind op dreef zijn. Dat is over 11 jaar; tijd genoeg voor iedereen die graag met de auto door Amsterdam wil rijden – geen waar genoegen – om een elektrische auto te kopen. Over een paar jaar zullen deze betaalbaar zijn en zal er inmiddels ook een aanzienlijk aanbod tweedehands exemplaren zijn. Maar nog beter is er helemaal geen auto meer aan te schaffen en incidenteel een elektrische deelauto te huren. Die staan steeds vaker op elke hoek. Dat scheelt pas echt in de portemonnee.

Amsterdam valt te prijzen om deze maatregel nu al aan te kondigen.

Iedereen had op de vingers van een hand kunnen natellen dat de stad dit ook wel moest, gegeven eerdere uitspraken om in 2040 emissieloos te zijn en al veel eerder de gehele binnenstad autovrij en -luw te willen maken. 

Een ding is zeker, mocht het de regering nog gaan lukken het eens te worden over een klimaatwet, dan is de eerste opgave om het gevoel van urgentie bij het gros van de bevolking te versterken. Een stad die voorop wil loopt, verdient daarbij alle steun.

Header: Smart cars op de Dam. Foto: gemeente Amsterdam

Steenkoolmijnen, bronnen van groene energie?

Mijnen kunnen een belangrijke bijdrage leveren aan de levering van warm water aan huishoudens en bedrijven. Het is verstandig daarbij tevens gebruik te maken van andere bronnen van aardwarmte met een lage temperatuur en restwarmte van bedrijven

Warmwaterbronnen – Foto: Michael Bower (Pexels)

Tot op heden is het gebruik van steenkool verantwoordelijk voor 25 procent van de uitstoot van broeikasgassen door de industrie. Voormalige steenkoolmijnen gaan echter bijdragen aan een duurzame toekomst.  

In geothermische gebieden zoals IJsland en Nieuw-Zeeland (foto) wordt al jarenlang gebruik gemaakt van warme bronnen voor verwarming en om te baden. De aarde is een onuitputtelijke bron van warmte, als er maar tevens water beschikbaar is.

Een reusachtig reservoir

Na de sluiting van vele kolenmijnen gedurende de laatste decennia zijn hun schachten en gangen langzaam volgelopen met water. Hoe dieper, hoe warmer het water is, variërend van 10oC vlak onder het oppervlak tot 30oC op een diepte van 700 meter.

Sommige wetenschappers zijn van mening dat dit water een belangrijke bron is van duurzame energie, waardoor de oude mijnen ineens een groene uitstraling krijgen[1]. Het Durham Energy Instituteheeft op verschillende plaatsen experimenten uitgevoerd. Alleen al in het Verenigd Koninkrijk is in de vorige eeuw 15 miljard ton steenkool gewonnen, waardoor er een reservoir is ontstaan van twee miljard kubieke meter water met een temperatuur tussen de 12-20°C. Dit komt overeen met 38.500 terajoule aan warmte, genoeg om 650.000 huizen te verwarmen, aangenomen dat het water zijn temperatuur behoudt[2].

Een onderzoek van de McGill University in Montreal, Canada, schat dat elke kilometer mijngang die gevuld is met water, een vermogen van 150 kW heeft[3]. Interessant is ook een onderzoek naar de mogelijke bijdrage van ondergelopen mijnen aan de productie van energie door middel van modellering. Een relevante, maar verontrustend resultaat van dit onderzoek is dat de temperatuur van het water over een periode van 50 jaar met 7 – 8°C zal afnemen als de hele watervoorraad binnen een jaar heeft gecirculeerd[4].

Praktijkvoorbeelden

De Ropak-verpakkingsfabriek in Springhill, Nova Scotia, zet sinds 1998 met succes mijnwater in voor haar warmwatervoorziening[5]. Mijnwater wordt bij een temperatuur van 18°C met een snelheid van 4 liter per seconde uit een ondergelopen kolenmijn gepompt. Hierbij passeert het een warmtepompsysteem voordat het via een andere schacht wordt geïnjecteerd (zie afbeelding hieronder). Het betreft dus een volledig gesloten lus. In vergelijking met conventionele verwarmingssystemen bespaart het bedrijf jaarlijks CAD 45.000 of het equivalent van ongeveer 600.000 kWh.

Bronnen die de Ropac Company voorzien van warm water – Centre for the Analysis and Dissemination of Demonstrated Energy Technologies 

Een andere casestudy betreft Asturië (Noordwest-Spanje), waar een ziekenhuis en een universiteitsgebouw met succes worden verwarmd met behulp van mijnwater[6].

Het meest interessante en innovatieve veldexperiment bevindt zich echter in Nederland, in de gemeente Heerlen.

De ontwikkeling van de rol van mijnwater als geothermische bron

De gemeente Heerlen is ongeveer 15 jaar geleden begonnen met onderzoek naar de mogelijkheid om een ondergelopen kolenmijn te gebruiken als geothermische bron voor verwarming en koeling van gebouwen[7]. Een paar jaar later werd een bedrijf opgericht om de gebleken mogelijkheden te realiseren: Mijnwater BV.

Er werden vijf putten geboord: twee voor warm water, twee voor koud water en één om water terug te geleiden (figuur). Een distributienetwerk van zeven kilometer bestaande uit drie buizen, het zogenaamde backbone, voorzag de gebouwen en huizen van energie

De warm- en koudwaterbuffers van Mijnwater te Heerlen. Illustratie uit: Weg van gas: Kansen voor de nieuwe concepten Lage Temperatuur Aardwarmte en Mijnwater, CE Delft 2018.

Al snel werd duidelijk dat water dat teruggepompt werd in de mijn zowel de temperatuur van zowel het ondergrondse warme en koude water beïnvloedde, conform de voorspellingen van de Poolse modelleringsstudie die hierboven vermeld werd.

Het bedrijf is niet bij de pakken neer gaan zitten en heeft in plaats daarvan het concept Mijnwater 2.0ontwikkeld. De belangrijkste uitgangspunten van dit nieuwe concept zijn:

• In plaats van de levering van lauwwarm mijnwater, werd de uitwisseling van energie tussen gebouwen – het optimale gebruik van restwarmte en -koude – de belangrijkste motor van het project.

• De ondergelopen mijn fungeert als een buffer voor warmte- en koudeopslag.

• Water dat wordt terug geleverd aan het mijnwaterreservoir is op temperatuur gebracht van het koude dan wel het warme deel daarvan. Daarom zijn alle putten geschikt gemaakt voor zowel het onttrekken als het teruggeleiden van water.

• De retourleiding (oranje buis in bovenstaande figuur) is niet langer nodig en wordt ingezet voor de toevoer en afvoer van warm of koud mijnwater om de capaciteit van het backbone te vergroten.

• Het distributiesysteem is gelaagd. In eerste instantie wisselen gebouwen binnen dezelfde cluster overschotten uit van warm en koud water. Vervolgens wisselen clusters onderling hun overschotten uit en uiteindelijk verschaft het backbone de clusters water uit de ondergrondse buffers (figuur hieronder)

• Het beheer van de toevoer van warm en koud water is volledig vraaggestuurd en geautomatiseerd.

Clusters en backbone – Illustratie: Weg van gas: Kansen voor de nieuwe concepten Lage Temperatuur Aardwarmte en Mijnwater, CE Delft 2018.

Op dit moment worden honderden huishoudens en ongeveer tien bedrijven en instellingen bediend door het netwerk. Contracten zijn al getekend voor de toevoeging van nog eens 1000 huishoudens.

Individuele dan wel collectieve warmtepompen worden ingezet om de temperatuur van het water te verhogen van 25 naar 60°C. Dit maakt verwarming mogelijk van matig tot tamelijk goed geïsoleerde huizen (label B -C) zonder grote veranderingen in het verwarmingssysteem. Dit is een belangrijke toegevoegde waarde ten opzichte van all-electric oplossingen. Deze zijn vooralsnog alleen toepasbaar in zeer goed geïsoleerde huizen en gebouwen (label A – A++). In dit geval gebruiken warmtepompen buitenlucht en ze verwarmen het water tot ongeveer 30°C.

Gedurende het laatste decennium is het mijnwatersysteem veranderd van rechtstreeks gebruik van warm mijnwater (Mijnwater 1.0) naar een smart thermal griddat in de eerste plaats restwarmte en -koude van deelnemende bedrijven en instellingen gebruikt (Mijnwater 2.0). De mijn heeft daarin een bufferfunctie (opslag en reserve) voor water 25°C en 16°C. De temperatuur blijft vrijwel zeker constant omdat er minder water wordt onttrokken en de buffers ver genoeg van elkaar af liggen. Bij deze methode kunnen ook andersoortige buffers worden gebruikt, zoals goed geïsoleerde aardlagen. Er is dan veel gelijkenis met zogeheten warmtekoudeopslag (WKO). 

verrijking van het smart thermal grid door aardwarmte

Het concept Mijnwater 2.0 is uitgebreid bestudeerd door CE Delft[8]. De conclusie is dat ongeveer 4,6 miljoen huishoudens in Nederland en ook veel bedrijven kunnen worden bediend door een concept als dit, zeker als het wordt gecombineerd met de inzet van aardwarmte met een lage temperatuur (ongeveer 20 – 30°C).

Een vergelijking tussen standaard geothermisch boren en boren naar aardwarmte met lage temperatuur – Illustratie: Visser & Smit Hanab

Het gebruik van aardwarmte met lage temperatuur (afkomstig tussen 250 – 1250 meter onder het oppervlak) is een welkome aanvulling op de meer gebruikelijke winning van aardwarmte vanaf een diepte tussen 1250 – 4000 meter en lager, waarvoor een veel complexere en duurdere boring is vereist. De winning van aardwarmte met lage temperatuur wordt aangevuld met zogenaamd horizontaal boren[9]. Het voordeel is dat het boren van putten voor winning en retourstroom kan plaatsvinden vanaf één plek en de capaciteit wordt verhoogd[10](figuur boven)

Onderstaande video demonstreert de winning van aardwarmte met lage temperatuur

De combinatie van een smart thermal grid en de winning van aardwarmte op lage temperatuur heeft vier kenmerken:

• Warmte en koude uitwisseling tussen gebruikers binnen en tussen clusters.

• Clusters staan in verbinding met buffers van warm en koud water.

• Winning van aardwarmte met lage temperatuur.

• Geavanceerde software die vraag en aanbod regelt.

Dit concept is om verschillende redenen aantrekkelijk:

• De schaalbaarheid; de aanleg kan starten met losse clusters, die later verbonden worden met een of meer backbones.

• De ruimere beschikbaarheid en kennis van warmtebronnen met lage temperatuur in de ondergrond in vergelijking met bronnen op grotere diepte en het relatieve gemak van hun winning.

• Toepasbaarheid in matig tot tamelijk goed geïsoleerde huizen, die dan aardgasvrij kunnen worden zonder kostbare isolatie en met gebruik van bestaande verwarmingssystemen.

• De mogelijkheid van warmte- en koudeopslag.

Hoe zit het de kolenmijnen?

Rechtstreeks onttrekken van water uit voormalige kolenmijnen blijkt riskant, vanwege de kans dat de temperatuur van het warme mijnwater geleidelijk daalt en die van het koude water stijgt. Voormalige kolenmijnen nabij plaatsen met een grote vraag naar warm en koud water kunnen worden gebruikt als buffer als onderdeel van een smart thermal grid

De waarde van het concept van smart thermal grids, zeker in combinatie met de winning van aardwarmte met hoge temperatuur, is echter niet beperkt tot gebieden waar in het verleden steenkool werd gewonnen. Los van het aardgas is stukken dichterbij gekomen.


[1]https://www.dur.ac.uk/news/newsitem/?itemno=37069

[2]https://www.citymetric.com/horizons/coal-power-dirty-abandoned-mines-could-help-create-clean-energy-future-3624

[3]http://www.thinkgeoenergy.com/abandoned-coal-mines-as-source-for-geothermal-direct-use-for-heating/

[4]Zbigniew MaJolepszy: Modelling of geothermal resources within abandoned coalmines, Upper ˜˜Silesia, Poland. Faculty of Earth Sciences, University of Silesia,

[5]https://www.nrcan.gc.ca/sites/oee.nrcan.gc.ca/files/pdf/publications/infosource/pub/ici/caddet/english/pdf/R122.pdf

[6]https://www.sciencedirect.com/science/journal/00489697

[7]Minewater 2.0 project in Heerlen the Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Paper 8th International Renewable Energy Storage Conference and Exhibition, IRES 2013 

https://www.mijnwater.com/wp-content/uploads/2014/04/Energy-procedia_IRES-2013_Verhoeven-V20012013-Final-1.pdf

[8]Weg van gasKansen voor de nieuwe concepten LageTemperatuurAardwarmte en Mijnwater https://www.mijnwater.com/wp-content/uploads/2018/09/CE_Delft_3K61_Weg_van_gas_DEF_LageTemperatuurAardwarmte_en_Mijnwater_20180720.pdf

[9]https://www.bpnieuws.nl/artikel/8015039/lage-temperatuur-aardwarmte/

[10]https://www.bndestem.nl/moerdijk/boren-naar-aardwarmte-in-zevenbergen-wat-we-hier-doen-is-uniek~ac6d00f9/

Ondernemingsraden hebben de verkeerde brief geschreven

Nederlandse bedrijven kunnen veel meer doen aan de vermindering van de CO2-uitstoot zonder dat dit hun continuïteit aantast. Ondernemingsraden moeten daarom een andere brief schrijven

Ondernemingsraden verzetten zich ertegen dat hun bedrijven vervuilers worden genoemd en worden aangeslagen met de beruchte CO2-taks van Jesse Klaver. In de open brief in de Volkskrant van 7 maart 2019 lichten ze hun zienswijze toe[1]. Ze betogen dat hun werkgevers al veel doen, dat de kosten zijn hoog zijn en dat hun werkgelegenheid op het spel staat. 

In dit korte essay zoek ik naar aanwijzingen voor de omvang van de inspanningen van Nederlandse bedrijven op het gebied van duurzaamheid. Ik concludeer dat ondernemingsraden aanleiding hadden om een brief te schrijven, maar dat ze de verkeerde brief hebben geschreven.

Het Bureau CDP beoordeelt tweejaarlijks wereldwijd een 60tal bedrijfstakken vanuit een duurzaamheidsperspectief[2]. Ik leg eerst de aanpak van CDP uit aan de hand van de sector chemie.  

Het onderzoek van CDP loopt parallel aan de richtlijnen van de Task Force on Climate-related Financial Disclosures (TCFD) voor de presentatie van gegevens in jaarverslagen. Er wordt gevraagd naar vier soorten gegevens:

  • Gegevens die samenhangen met risico’s van CO2-emissies in de hele keten (zogenaamde ‘scope 3 emissions’), waaronder de beschikbaarheid van alternatieve hulpbronnen (transition risks).
  • Gegevens die voortvloeien uit risico’s met betrekking tot de beschikbaarheid van schoon water in het bijzonder en het watermanagement van het bedrijf in het algemeen (physical risks).
  • Gegevens over de voortgang van de overgang naar een emissiearme toekomst, over de daartoe gewenste product- en procesinnovatie en de over de omvang van de investeringen in R&D die met dit doel plaatsvinden (transition opportunities).
  • Gegevens over de mate waarin een bedrijf de omschakeling naar duurzame productie heeft geïnternaliseerd in zijn strategie, inclusief de beloning van het management (climate governance and strategy).

Bedrijven worden op basis van deze criteria in vier categorieën verdeeld (A, B, C en D) Daarnaast is er een groep bedrijven waarvan te weinig gegevens beschikbaar zijn (E). De onderstaande tabel toont hoe deze indeling uitvalt voor de onderzochte ondernemingen uit de sector chemie[3].

Chemie

De chemische industrie neemt 28% van het totale industriële industriegebruik (stand van zaken 2017) voor haar rekening. Ze is verantwoordelijk voor 13% van de industriële CO2-uitstoot. Volgens CDP neemt de efficiëntie van het energieverbruik jaarlijks toe, wat resulteert in een daling van de CO2-emissie. Dit is vooral het gevolg van incrementele verbeteringen. CDP acht het noodzakelijk om binnen 5 – 10 jaar radicale veranderingen door te voeren, zoals de vervanging van aardolie en -gas door biomassa als grondstof. Hoopgevend is dat de uitgaven voor R&D vijfmaal hoger zijn dan het gemiddelde in de industrie.

Staal

De staalindustrie staat er voor wat betreft CO2-emissie wereldwijd slechter voor (stand van zaken 2016)[4]. Het energieverbruik en de CO2-emissie is de laatste jaren gestegen, terwijl een daling van de emissies met 70% nodig is om een evenredige bijdrage te leveren van het realiseren van de Parijse akkoorden (op 2oC niveau). Een aantal van de onderzochte bedrijven zegt te streven naar reductie van de CO2-uitstoot, maar geen enkel bedrijf kijkt verder dan 2020. Het rapport waarschuwt dat de industrietak te maken zal krijgen meteen aanzienlijke CO2-belasting.

De best scorende bedrijven zijn het Koreaanse POSCO en het Zweedse SSAB. De slechtst scorende bedrijven zijn Tata Steel en US Steel. 

De CDP A-lijst

De hoogst scorende bedrijven uit alle bedrijfstakken samen staan op de prestigieuze CDP A-lijst[5]. Nederlandse bedrijven op deze lijst zijn Unilever, ING, Philips, Signify (de verlichtingstaak van Philips) en de RELX Groep (voorheen Reed-Elsevier). De rest van de 90 Nederlandse bedrijven die zijn onderzocht, scoort lager[6].  

Uit de gegevens blijkt dat het rendement voor aandeelhouders van bedrijven die op de A-lijst staan in de periode december 2011 – juli 2016 5,4% hoger was dan het gemiddelde van alle beursgenoteerde bedrijven. De grootste vermogensbeheerder ter wereld, BlackRock  met €4.800 miljard uitstaand vermogen, bevestigt de relatie tussen aandacht voor duurzaamheid en financieel rendement en dus groeiende interesse bij beleggers[7].

RobecoSAM

Een manier om de betrouwbaarheid van de CDP-lijst onderzoeken is om de scores te vergelijken met die van op een andere gezaghebbende lijst, namelijk die van RobecoSAM[8]. Deze lijst vermeldt 2686 bedrijven, waarvan een beperkt deel de score ‘goud’, ‘zilver’ of ‘brons’ behaalt (te vergelijken met de A-lijst van CDP).

Van de Nederlandse bedrijven scoren Unilever, Philips, Signify en DSM ‘goud’ binnen hun eigen bedrijfstaak; bedrijven die alle ook voorkomen op de CPD-A (of A-) lijst[9].

KPN (A-) en AkzoNobel (A), die in de editie van 2018 eveneens goud scoorden, behalen in 2019 resp. zilver en brons. Eveneens is er een zilveren medaille voor ABN AMRO (B). Brons is er verder voor Ahold Delhaize (C), Nationale Nederlanden (B), PostNL (A-), Randstad (D) en – vooruit – Air France-KLM (B).

Van de bedrijven, waartoe de ondertekenaars van de voornoemde brief behoren, staat geen enkel bedrijf op de CDP- A-lijst.

Zeven behoren tot groep B en twee tot groep C . Van de overige zijn onvoldoende gegevens bekend (E). Opvallend is dat Tata Steel goud scoort op de lijst van RobecoSAM maar tot de achterhoede hoort bij CDP[10].

Bedrijven die hoog op bovenstaande lijsten scoren kunnen nog lang niet in alle opzichten als duurzaam gekwalificeerd worden. Uit een rapport van Greenpeace blijkt bijvoorbeeld dat 25% van het plastic dat de stranden van de Filipijnen bedekt, afkomstig is van koplopers Neslé en Unilever[11].  Unilever[12] en Nestlé[13] erkennen het probleem en beide bedrijven hadden al eerder kenbaar gemaakt om voor 2025 alle plastic afbreekbaar, composteerbaar of herbruikbaar te maken. 

Terug naar de ondertekenaars van de brief. Mijn stelling is dat deze een verkeerde brief geschreven hebben. 

Uit de analyses van zowel CDP als RobecoSAM blijkt dat geen van de bedrijven van de ondertekenaars behoren, koplopers zijn op het gebied van duurzaamheid. Ze benutten lang niet alle mogelijkheden om de uitstoot van CO2te beperken en de maatregelen die ze nemen zijn vaak incrementeel. Dat komt omdat dit doel ondergeschikt is aan hun primaire missie, het streven naar een zo hoog mogelijke winst en/of beurswaarde. De primaire missie bepaalt de investeringsruimte en dus ook de omvang van de investeringen in de beperking van de CO2-emissie.

De urgentie van de beteugeling van de uitstoot van broeikasgassen vraagt om een andere benaderingswijze. Namelijk alle maatregelen nemen die technisch mogelijk zijn en deze een hogere prioriteit toekennen dan maximaliseren van de winst en/of aandeelhouderswaarde, met in acht name van de continuïteit van het bedrijf.

De ondernemingsraden zouden daarom twee brieven moeten schrijven. 

Een aan de eigen directie met een pleidooi om terugdringen van de CO2-uitstoot de hoogste prioriteit toe te kennen in de missie van het bedrijf, ook al gaat dat ten koste van de hoogte van de winst en de aandeelhouderswaarde, uiteraard met borging van het voortbestaan van het bedrijf als randvoorwaarde. 

Als de directie hier wel oren naar heeft, kan er een tweede brief uitgaan naar de overheid. Hierin wordt ontheffing gevraagd voor de CO2-taks omdat het bedrijf maximaal investeert in een emissieloze toekomst en een CO2-taks ten koste zal gaan van een deel van deze investeringen.

Mochten de ondernemingsraden met hun eerste brief succes hebben, dan dragen ze bij aan een verandering van de maatschappelijke positie van het bedrijfsleven, namelijk een transitie van kapitalistische naar sociale ondernemingen. Daarover gaat mijn volgende blogpost.

Lukt dat niet, laat dan de CO2-taks maar komen, maar dan wel in Europees verband.


[1]https://www.volkskrant.nl/columns-opinie/open-brief-aan-politiek-leiders-bedrijf-geen-politiek-met-onze-banen-wij-zijn-trots-op-banen-en-vooruitgang~b5760a86/

[2]https://6fefcbb86e61af1b2fc4-c70d8ead6ced550b4d987d7c03fcdd1d.ssl.cf3.rackcdn.com/cms/reports/documents/000/004/150/original/CDP_Consumer_Goods_2019_Exec_summary.pdf?1550855903

[3]https://6fefcbb86e61af1b2fc4-c70d8ead6ced550b4d987d7c03fcdd1d.ssl.cf3.rackcdn.com/cms/reports/documents/000/002/683/original/CDP_Chemicals_2017.pdf?1507139412

[4]https://6fefcbb86e61af1b2fc4-c70d8ead6ced550b4d987d7c03fcdd1d.ssl.cf3.rackcdn.com/cms/reports/documents/000/001/195/original/CDP_Steel_2016_FINAL.pdf.pdf?1479377027

[5]https://www.duurzaam-ondernemen.nl/worlds-top-green-businesses-revealed-in-the-cdp-a-list/?utm_source=Online+Kenniscentrum+Duurzaam+Ondernemen&utm_campaign=5239c81567-DuOn_EMAIL_CAMPAIGN&utm_medium=email&utm_term=0_bc05740288-5239c81567-291310645

[6]https://www.cdp.net/en/scores#446647786929955804cc9a3a08ef1eb4

[7]https://www.duurzaambedrijfsleven.nl/future-finance/25093/john-mckinley-blackrock-bedrijven-die-rekening-houden-met-klimaatverandering-zijn-op-de-lange-termijn-winstgevender

[8]http://yearbook.robecosam.com

[9]Ik vermeld hierna achter de scores op de lijst van RobecoSAM tussen haakjes de scores op de CDP-lijst.

[10]Vermoedelijk komt dit omdat CDP uitsluitend gegevens had over de activiteiten van Tata Steel in India. 

[11]https://www.duurzaam-ondernemen.nl/greenpeace-nestle-en-unilever-topvervuilers-monsterlijke-hoeveelheden-plastic-in-filipijnen/

[12]https://www.duurzaam-ondernemen.nl/unilever-wil-afbreekbaar-plastic-2025/

[13]https://www.duurzaam-ondernemen.nl/nestle-wil-uiterlijk-in-2025-haar-verpakkingen-voor-100-recyclen-of-hergebruiken/

Waterstof: Vooral geopolitiek bepaalt toekomstige rol

Het zijn niet technische overwegingen die de rol van waterstof in de toekomstige energievoorziening bepalen, maar de bereidheid om grote hoeveelheden waterstof in te voeren.

Waterstof opslag. Foto NASA (publiek domein)

Ik sta eerst stil bij de productie en de toepassing van waterstof als brandstof. Daarna komt de beschikbaarheid ervan aan de orde.

De productie van waterstof

Het proces van elektrolyse brengt water in aanraking met elektriciteit met als resultaat zuurstof en waterstof. Geen enkele schadelijke emissie dus. Schadelijke emissie ontstaat wel als bij de productie van waterstof ‘grijze’ stroom wordt gebruikt. Groene waterstof is gemaakt met elektriciteit, afkomstig van schone energiebronnen. Van blauwe waterstof is sprake als de vrijkomende CO2 tijdens de productie van elektriciteit wordt opgevangen en opgeslagen. Het onderstaande filmpje toont op begrijpelijke wijze hoe in het proces van elektrolyse waterstof wordt gemaakt.

De voor- en de nadelen van waterstof.

Het belangrijkste nadeel van waterstof is dat 60% van de energetische waarde verloren gaat als je elektriciteit gebruikt om waterstof te maken en deze daarna weer wordt omgezet in elektriciteit met behulp van een ‘brandstofcel’. Stroom bewaren in een accu levert maar 5% rendementsverlies op.

Soms wordt ook wel gewezen op het gevaar van waterstof: De ramp met de Hindenburg in 1937, een reusachtige zeppelin gevuld met waterstof. Achteraf blijkt dat de waterstof niet de oorzaak van deze ramp was. 

Waterstof is minder gevaarlijk dan aardgas. Je loopt in elk geval geen kans op koolstofmonoxidevergiftiging.

Het grote voordeel van waterstof is dat het goed kan worden opgeslagen, zeker in de vorm van vloeibare ammoniak. Ammoniak kan makkelijk weer worden omgezet in waterstof. Waterstofgas gedraagt zich hetzelfde als aardgas; je hebt er alleen de dubbele hoeveelheid van nodig en daarom branders met iets grotere gaatjes. Ook moet er een kleurstof worden toegevoegd, want waterstof brandt onzichtbaar.

De opslag van waterstof

Een kilo waterstof levert ongeveer evenveel energie als een volgelaten Tesla Power Wall. Een tank met 60.000 m3 ammoniak komt overeen met ruim 200 miljoen kilowattuur. Dat is de jaarproductie van een 30 moderne windturbines op land. Als die tanklading daarna weer omgezet wordt in elektriciteit, hebben daarvoor 75 windmolens een jaar staan draaien.

De conclusie is overduidelijk: Sla overtollige elektriciteit zo veel mogelijk op in accu’s en gebruik ammoniak alleen als je opgewekte stroom langdurig wilt opslaan of desnoods als je van de ammoniak weer waterstofgas maakt. Het rendementsverlies is dan ‘maar’ 30%. Met dit inzicht is het mogelijk om de potentiële toepassingen van waterstof te beoordelen[1].

Industriële toepassingen

Waterstof is een onvervangbaar hulpmiddel in de chemische industrie, ook vanwege de hoge temperatuur die ermee kan worden bereikt.

Groene waterstof levert een bijdrage aan de verduurzaming van de industrie. Een aantal bedrijven in Zeeland en België wil daartoe een waterstofnetwerk tussen Vlissingen en Gent aanleggen.

Fiets op waterstof. De Alpha 2.0. Foto Pragma Industries

Vervoer

Inmiddels zijn er voor alle vormen van vervoer – zelf fietsen[2]– op waterstof aangedreven varianten beschikbaar. 

Met het voorgaande in gedachten is waterstof als brandstof voor personenauto’s tamelijk onzinnig. De actieradius is ongeveer 600 km en het tanken gaat snel, maar het verschil met elektrische auto’s wordt snel kleiner. Er zijn nog maar weinig automerken die gaan voor personenauto’s op waterstof, waaronder Toyota. Vermeldenswaard is de ontwikkeling een hybride auto, die rijdt op elektriciteit en waarvan de accu onder het rijden wordt opgeladen door een brandstofcel. Hier werkt Daimler aan, na de ontwikkeling van een volledig door waterstof aangedreven personenauto te hebben stopgezet.

Voor andere transportmiddelen kan het oordeel positiever uitvallen[3]. De regel is, hoe groter de gewenste actieradius en hoe zwaarder vervoermiddel en lading zijn, des te meer de voordelen van waterstof opwegen tegen het gebruik van accu’s. Te denken valt aan bussen, vrachtauto’s maar ook aan vliegtuigen en schepen[4]. De provincie Groningen en QBuzz  experimenteren met bussen op waterstof. De 20 bussen gaan rijden op de lange trajecten. Dit in tegenstelling tot de rest van het wagenpark, dat op termijn geheel elektrisch zal zijn omdat laden in de dienstregeling kan worden ingepast. 

Verwarming

Waterstofgas is in principe een bruikbare vervanger van aardgas. Netbeheerder Stedin gaat groen waterstofgas inzetten om de woningen van een appartementencomplex in Rotterdam te verwarmen. De waterstof wordt lokaal geproduceerd en via speciale gasleidingen verder getransporteerd[5](foto). Voor deze oplossing is viermaal zoveel elektriciteit nodig dan voor een warmtepomp, uitgaande van een goede isolatie.

Waterstofinstallatie in Rotterdam (blauwe containers) en het appartementencomplex (links midden) dat met waterstof verwarmd zal worden. Foto: DNV GL

Woningcorporaties overwegen niettemin om waterstof in te zetten als alternatief voor dure isolatie van oudere woningen. Tenzij waterstof heel goedkoop kan worden ingevoerd, zal het een dure oplossing blijven. De kans is daarom groot dat verwarming op waterstof of biogas zal zijn voorbehouden aan historische binnensteden, waar weinig alternatieven zijn.

De conclusie is dat het gebruik van Nederlandse zonne- of windenergie voor de productie van waterstof een kostbare zaak is[6].Er is een grote hoeveelheid elektriciteit voor nodig. Het is zeer de vraag of we daarvoor hier opgewekte groene elektriciteit moeten gebruiken. Deze is hard nodig voor de elektriciteitsvoorziening en alleen daarvoor moet het areaal wind- en zonne-energie vele malen groter worden dan nu.

Geopolitieke aspecten

Waterstof kan beter worden geïmporteerd, net als steenkool indertijd. De productiekosten van zonne-energie in woestijngebieden liggen aanzienlijk lager dan die in Europa. Dit komt vooral door de aanzienlijk grotere lichtintensiteit, waardoor de opbrengt van zonnepanelen en -collectoren tweemaal zo groot is[7]. Zonne-energie zal dan worden omgezet in waterstof en met name ammoniak en kan per tanker worden vervoerd. De lage prijs compenseert het lagere rendement.

De toekomstige exportlanden van waterstof zijn – jawel – de huidige Golfstaten.  En dat ligt gevoelig.

 Pas als de internationale betrekkingen stabieler worden, zal van invoer op grote schaal sprake zijn en krijgen de voornoemde toepassingen van waterstof een reële kans.


[1]https://www.duurzaambedrijfsleven.nl/energie/30369/waterstof-toepassingen

[2]https://www.pragma-industries.com/products/light-mobility/

[3]https://www.businessinsider.nl/zijn-waterstofautos-in-de-toekomst-onmisbaar-deskundigen-denken-van-wel-dit-is-waarom/

[4]https://www.duurzaambedrijfsleven.nl/logistiek/30429/is-waterstof-de-duurzame-oplossing-voor-de-binnenvaart?utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+12+November

[5]https://www.stedin.net/over-stedin/pers-en-media/persberichten/eerste-huizen-verwarmd-met-waterstof-komen-in-rotterdam-rozenburg

[6]In het navolgende artikel rekent Thijs van den Brinck de kosten door van het gebruik van waterstof voor een aantal toepassingen. Zeer lezenswaardig: http://www.wattisduurzaam.nl/15443/energie-beleid/tien-peperdure-misverstanden-over-wondermiddel-waterstof/

[7]http://www.wattisduurzaam.nl/5969/energie-opwekken/zonne-energie/zonnestroom-mexico-duikt-4-dollarcent-per-kilowattuur/