De aarde: Onuitputtelijke bron van schone energie

Aardwarmte speelt een grote rol in de plannen van Amsterdam, Nijmegen en menige andere gemeente om in 2040 CO2-emissievrij te zijn. Er is nog heel veel werk te doen voordat dit doel is bereikt.

Aardwarmte bij kwekerij Zeurniet in Honselersdijk. 

We lezen veel over de snelle groei van zonne- en windenergie.Publicaties over aardwarmte (geothermie) waren tot voor kort schaars. Niet vreemd want het aandeel van aardwarmte in het wereldwijze energiegebruik in 2017 is (afgerond) 0%, tegen 81% fossiele bronnen[1]. Maar verandering is in zicht. Enige tijd geleden schreef ik over de winning van ondiepe aardwarmte (tussen 250 – 750 m.). In deze post komt het hele scala van mogelijkheden om aardwarmte te winnen aan de orde.

In Nederland hebben tuinbouwondernemers in 2007 de grondslag gelegd voor het ontstaan van een geothermiesector. Er zijn vanaf dat jaar 35 putten geboord, waarvan er 14 actief zijn. 

De totale jaarlijkse vraag naar warmte in Nederland bedraagt thans ongeveer 960 petajoule. Deze zal vermoedelijk dalen naar 930 petajoule in 2030 en naar 870 petajoule in 2050. Deze daling van de vraag komt door een efficiënter gebruik van warmte, betere isolatie en dalende bevolkingsgroei. Hier staat tegenover het groeiende gebruik van elektriciteit voor vervoer. De bijdrage van geothermie aan de huidige vraag naar warmte is slechts 3 petajoule.

Ongeveer de helft van de vraag naar warmte is afkomstig van de gebouwde omgeving (verwarming en warm kraanwater). Aardgas, biomassa en restwarmte zijn thans de belangrijkste energiebronnen. In de toekomst moet geothermie de plaats van het aardgas voor een belangrijk deel overnemen.

Doublet met productie- en infiltratieput. Afbeelding afkomstig uit: Stappenplan geothermie voor de glastuinbouw, december 2013

Wat is aardwarmte?

Geothermie, onttrekt warmte aan aardlagen tussen 250 en 5000 meter diep (zie afbeelding). Hier bevindt zich warm water van 15 tot 125oC. Dit water kan wel 150 miljoen jaar oud zijn en het is zout door de erin opgeloste mineralen. Het water wordt opgepompt met behulp van een productieput, staat zijn warmte af via een warmtewisselaar en het afgekoelde water verdwijnt weer via een injectieput in de bodem, op enige afstand van de plaats waar het vandaan komt (Zie afbeelding) Hier warmt het in ongeveer een jaar tijd weer op. Beide putten samen heten een doublet.  

Reserves

Jos Limberger. Foto Universiteit Utrecht

Jos Limberger is onlangs aan de Universiteit van Utrecht gepromoveerd op de ontwikkeling van geothermie[2]. Hij berekent dat de jaarlijks winbare hoeveelheid aardwarmte in de orde van grootte ligt van het totale jaarlijkse mondiale energieverbruik. Hieraan is echter een aantal mitsen en maren verbonden. Het opzetten van een grootschalig productiesysteem vereist grote investeringen. Deze zijn vergelijkbaar met de aardoliewinning, waarvan de baten echter veel hoger zijn. De productie moet (in tegenstelling tot de aardoliewinning) over een relatief groot oppervlak worden gespreid, om het water weer op temperatuur te laten komen. Tegelijkertijd moeten de putten dichtbij de plaats liggen waar de warmte wordt gebruikt.

Al met al zijn de kosten voor de ontwikkeling van boorlocaties op dit moment nog te groot voor economisch verantwoorde exploitatie.

Een meer grootschalige aanpak kan hier verandering in brengen. Dit lijkt te gaan gebeuren.

Het onderstaande filmpje geeft een goed beeld van de winning van aardwarmte.

Wereldwijd hebben 49 landen in de periode 2014 – 2017 samen ongeveer $20 miljard geïnvesteerd in geothermie.  Naar verhoging niet veel. Shell besteedde in die periode $25 miljard aan het zoeken naar nieuwe olievelden. Nederland investeert naar verhouding veel: in de eerste helft van 2018 alleen al is er bijna een half miljard dollar toegezegd aan subsidie. 

Onderzoek in Nederland

Het onderzoek in Nederland is het afgelopen jaar opgeschaald: Het betreft vooral onderzoek naar de mogelijkheden van ultradiepe geothermie[3]. Dit mede omdat vanwege de hoge temperatuur (120 – 250C.) Deze vorm van geothermie ook relevant is voor de industrie, die een warmtebehoefte heeft van 400 petajoule). 

Aan dit grootschalig onderzoek doen mee Engie, de Universiteit Utrecht, het Universitair Medisch Centrum Utrecht, de Hogeschool Utrecht en de Stichting Kantorenpark Rijnsweerd. 

Verder doet Energie Beheer Nederland (EBN) seismisch onderzoek om vast te stellen waar en op welke diepte zich winbare aardwarmte bevindt en bovendien of de bodemgesteldheid winning mogelijk maakt[4].   

Risico’s

Bij het boren naar aardwarmte, doet zich een beperkt aantal risico’s voor, dat bij in acht neming van grote zorgvuldigheid en het gebruik van de juiste technieken en apparatuur tot een minimum teruggebracht kunnen worden. 

Door bij het boren rekening te houden met natuurlijke breuken in de ondergrond is de kans op een aardbeving klein.

Dankzij een speciale constructie van de buizen kan er geen water van de ene aardlaag in de andere terecht komt. 

Van groot belang verder is dat bij de productie van aardwarmte geen materie aan de ondergrond wordt onttrokken: De warmte wordt met behulp van een warmtewisselaar gewonnen en het afgekoelde water wordt weer teruggepompt. Hierdoor blijft de druk onveranderd en is de kans op bodemdaling gering.

Pionier stadium

De Staatstoezicht voor de Mijnen, tevens belast met geothermie, is tamelijk kritisch over de manier waarop de winning en de exploitatie van aardwarmte tot dusver in Nederland heeft plaatsgevonden. Hiervan is in 2017 uitvoerig verslag gedaan in het rapport De Staat van de geothermie in Nederland[5].

Het rapport schrijft dat milieu- en veiligheidsrisico’s onvoldoende worden onderkend, wet- en regelgeving niet goed genoeg wordt nageleefd en er sprake is van een zwak ontwikkelde veiligheidscultuur bij initiatiefnemers en hun aannemers. De Raad wijt dat deels aan de kleinschaligheid van de sector, het gebrek aan middelen en onvoldoende deskundig personeel. Dit heeft geleid tot een aantal incidenten.  Zo is er overigens met medeweten van de Raad geboord op plaatsen in Limburg en Brabant die dicht bij breukzones liggen. Door de (verplichte) aanwezigheid van een sensorsysteem werden de overigens lichte aardbevingen die daar het gevolg van waren onmiddellijk opgemerkt, waarna de winning op deze locaties is stilgelegd. Hetzelfde geldt voor boringen in het aardbevingsgebied van Groningen. 

In mei 2018 heeft het Platform Geothermie het Masterplan aardwarmte in Nederland, een brede basis voor een duurzame warmtevoorziening[6]gepubliceerd.

Dit plan moet ertoe leiden dat aardwarmte samen met duurzame restwarmte en biomassa op substantiële wijze gaat bijdragen aan de toekomstige vraag naar warmte. De huidige productie van 3 petajoule neemt dan toe naar 50 petajoule in 2013 en tot meer dan 200 petajoule per jaar in 2050. Van deze 200 petajoule zal ongeveer 40% geleverd zal worden via warmtenetten. Om dit doel te bereiken moet het aantal doubletten groeien van de huidige 14 naar 175 in 2030, en vervolgens naar 700 in 2050. 

Bij de opschaling van het aantal doubletten speelt de aanwezige expertise in de glastuinbouw een grote roi. De ondergrond in het Westland is goed in kaart gebracht. Van de gewenste uitbreiding van 3 naar 50 petajoule in 2030, kan 30 petajoule in de glastuinbouwsector worden gerealiseerd, wat tijd geeft om elders seismisch onderzoek uit te voeren.

Helaas ontbreekt een gespecificeerde begroting. Maar als het geformuleerde doel wordt bereikt, komt de haalbaarheid van de energietransitie een stap dichterbij.


[1]https://goo.gl/KyKPrc

[2]https://www.uu.nl/en/events/phd-defence-thermo-mechanical-characterization-of-the-lithosphere-implications-for-geothermal

[3]https://www.duurzaambedrijfsleven.nl/energie/30487/engie-geothermie?utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+19+November

[4]https://www.duurzaambedrijfsleven.nl/energie/30545/locaties-geothermie?utm_source=nieuwsbrief&utm_medium=e-mail&utm_campaign=Daily+Focus+27+November

[5]https://www.sodm.nl/documenten/rapporten/2017/07/13/staat-van-de-sector-geothermie

[6]https://www.geothermie.nl/images/Onderzoeken-en-rapporten/20180529-Masterplan-Aardwarmte-in-Nederland.pdf

Steenkoolmijnen, bronnen van groene energie?

Mijnen kunnen een belangrijke bijdrage leveren aan de levering van warm water aan huishoudens en bedrijven. Het is verstandig daarbij tevens gebruik te maken van andere bronnen van aardwarmte met een lage temperatuur en restwarmte van bedrijven

Warmwaterbronnen – Foto: Michael Bower (Pexels)

Tot op heden is het gebruik van steenkool verantwoordelijk voor 25 procent van de uitstoot van broeikasgassen door de industrie. Voormalige steenkoolmijnen gaan echter bijdragen aan een duurzame toekomst.  

In geothermische gebieden zoals IJsland en Nieuw-Zeeland (foto) wordt al jarenlang gebruik gemaakt van warme bronnen voor verwarming en om te baden. De aarde is een onuitputtelijke bron van warmte, als er maar tevens water beschikbaar is.

Een reusachtig reservoir

Na de sluiting van vele kolenmijnen gedurende de laatste decennia zijn hun schachten en gangen langzaam volgelopen met water. Hoe dieper, hoe warmer het water is, variërend van 10oC vlak onder het oppervlak tot 30oC op een diepte van 700 meter.

Sommige wetenschappers zijn van mening dat dit water een belangrijke bron is van duurzame energie, waardoor de oude mijnen ineens een groene uitstraling krijgen[1]. Het Durham Energy Instituteheeft op verschillende plaatsen experimenten uitgevoerd. Alleen al in het Verenigd Koninkrijk is in de vorige eeuw 15 miljard ton steenkool gewonnen, waardoor er een reservoir is ontstaan van twee miljard kubieke meter water met een temperatuur tussen de 12-20°C. Dit komt overeen met 38.500 terajoule aan warmte, genoeg om 650.000 huizen te verwarmen, aangenomen dat het water zijn temperatuur behoudt[2].

Een onderzoek van de McGill University in Montreal, Canada, schat dat elke kilometer mijngang die gevuld is met water, een vermogen van 150 kW heeft[3]. Interessant is ook een onderzoek naar de mogelijke bijdrage van ondergelopen mijnen aan de productie van energie door middel van modellering. Een relevante, maar verontrustend resultaat van dit onderzoek is dat de temperatuur van het water over een periode van 50 jaar met 7 – 8°C zal afnemen als de hele watervoorraad binnen een jaar heeft gecirculeerd[4].

Praktijkvoorbeelden

De Ropak-verpakkingsfabriek in Springhill, Nova Scotia, zet sinds 1998 met succes mijnwater in voor haar warmwatervoorziening[5]. Mijnwater wordt bij een temperatuur van 18°C met een snelheid van 4 liter per seconde uit een ondergelopen kolenmijn gepompt. Hierbij passeert het een warmtepompsysteem voordat het via een andere schacht wordt geïnjecteerd (zie afbeelding hieronder). Het betreft dus een volledig gesloten lus. In vergelijking met conventionele verwarmingssystemen bespaart het bedrijf jaarlijks CAD 45.000 of het equivalent van ongeveer 600.000 kWh.

Bronnen die de Ropac Company voorzien van warm water – Centre for the Analysis and Dissemination of Demonstrated Energy Technologies 

Een andere casestudy betreft Asturië (Noordwest-Spanje), waar een ziekenhuis en een universiteitsgebouw met succes worden verwarmd met behulp van mijnwater[6].

Het meest interessante en innovatieve veldexperiment bevindt zich echter in Nederland, in de gemeente Heerlen.

De ontwikkeling van de rol van mijnwater als geothermische bron

De gemeente Heerlen is ongeveer 15 jaar geleden begonnen met onderzoek naar de mogelijkheid om een ondergelopen kolenmijn te gebruiken als geothermische bron voor verwarming en koeling van gebouwen[7]. Een paar jaar later werd een bedrijf opgericht om de gebleken mogelijkheden te realiseren: Mijnwater BV.

Er werden vijf putten geboord: twee voor warm water, twee voor koud water en één om water terug te geleiden (figuur). Een distributienetwerk van zeven kilometer bestaande uit drie buizen, het zogenaamde backbone, voorzag de gebouwen en huizen van energie

De warm- en koudwaterbuffers van Mijnwater te Heerlen. Illustratie uit: Weg van gas: Kansen voor de nieuwe concepten Lage Temperatuur Aardwarmte en Mijnwater, CE Delft 2018.

Al snel werd duidelijk dat water dat teruggepompt werd in de mijn zowel de temperatuur van zowel het ondergrondse warme en koude water beïnvloedde, conform de voorspellingen van de Poolse modelleringsstudie die hierboven vermeld werd.

Het bedrijf is niet bij de pakken neer gaan zitten en heeft in plaats daarvan het concept Mijnwater 2.0ontwikkeld. De belangrijkste uitgangspunten van dit nieuwe concept zijn:

• In plaats van de levering van lauwwarm mijnwater, werd de uitwisseling van energie tussen gebouwen – het optimale gebruik van restwarmte en -koude – de belangrijkste motor van het project.

• De ondergelopen mijn fungeert als een buffer voor warmte- en koudeopslag.

• Water dat wordt terug geleverd aan het mijnwaterreservoir is op temperatuur gebracht van het koude dan wel het warme deel daarvan. Daarom zijn alle putten geschikt gemaakt voor zowel het onttrekken als het teruggeleiden van water.

• De retourleiding (oranje buis in bovenstaande figuur) is niet langer nodig en wordt ingezet voor de toevoer en afvoer van warm of koud mijnwater om de capaciteit van het backbone te vergroten.

• Het distributiesysteem is gelaagd. In eerste instantie wisselen gebouwen binnen dezelfde cluster overschotten uit van warm en koud water. Vervolgens wisselen clusters onderling hun overschotten uit en uiteindelijk verschaft het backbone de clusters water uit de ondergrondse buffers (figuur hieronder)

• Het beheer van de toevoer van warm en koud water is volledig vraaggestuurd en geautomatiseerd.

Clusters en backbone – Illustratie: Weg van gas: Kansen voor de nieuwe concepten Lage Temperatuur Aardwarmte en Mijnwater, CE Delft 2018.

Op dit moment worden honderden huishoudens en ongeveer tien bedrijven en instellingen bediend door het netwerk. Contracten zijn al getekend voor de toevoeging van nog eens 1000 huishoudens.

Individuele dan wel collectieve warmtepompen worden ingezet om de temperatuur van het water te verhogen van 25 naar 60°C. Dit maakt verwarming mogelijk van matig tot tamelijk goed geïsoleerde huizen (label B -C) zonder grote veranderingen in het verwarmingssysteem. Dit is een belangrijke toegevoegde waarde ten opzichte van all-electric oplossingen. Deze zijn vooralsnog alleen toepasbaar in zeer goed geïsoleerde huizen en gebouwen (label A – A++). In dit geval gebruiken warmtepompen buitenlucht en ze verwarmen het water tot ongeveer 30°C.

Gedurende het laatste decennium is het mijnwatersysteem veranderd van rechtstreeks gebruik van warm mijnwater (Mijnwater 1.0) naar een smart thermal griddat in de eerste plaats restwarmte en -koude van deelnemende bedrijven en instellingen gebruikt (Mijnwater 2.0). De mijn heeft daarin een bufferfunctie (opslag en reserve) voor water 25°C en 16°C. De temperatuur blijft vrijwel zeker constant omdat er minder water wordt onttrokken en de buffers ver genoeg van elkaar af liggen. Bij deze methode kunnen ook andersoortige buffers worden gebruikt, zoals goed geïsoleerde aardlagen. Er is dan veel gelijkenis met zogeheten warmtekoudeopslag (WKO). 

verrijking van het smart thermal grid door aardwarmte

Het concept Mijnwater 2.0 is uitgebreid bestudeerd door CE Delft[8]. De conclusie is dat ongeveer 4,6 miljoen huishoudens in Nederland en ook veel bedrijven kunnen worden bediend door een concept als dit, zeker als het wordt gecombineerd met de inzet van aardwarmte met een lage temperatuur (ongeveer 20 – 30°C).

Een vergelijking tussen standaard geothermisch boren en boren naar aardwarmte met lage temperatuur – Illustratie: Visser & Smit Hanab

Het gebruik van aardwarmte met lage temperatuur (afkomstig tussen 250 – 1250 meter onder het oppervlak) is een welkome aanvulling op de meer gebruikelijke winning van aardwarmte vanaf een diepte tussen 1250 – 4000 meter en lager, waarvoor een veel complexere en duurdere boring is vereist. De winning van aardwarmte met lage temperatuur wordt aangevuld met zogenaamd horizontaal boren[9]. Het voordeel is dat het boren van putten voor winning en retourstroom kan plaatsvinden vanaf één plek en de capaciteit wordt verhoogd[10](figuur boven)

Onderstaande video demonstreert de winning van aardwarmte met lage temperatuur

De combinatie van een smart thermal grid en de winning van aardwarmte op lage temperatuur heeft vier kenmerken:

• Warmte en koude uitwisseling tussen gebruikers binnen en tussen clusters.

• Clusters staan in verbinding met buffers van warm en koud water.

• Winning van aardwarmte met lage temperatuur.

• Geavanceerde software die vraag en aanbod regelt.

Dit concept is om verschillende redenen aantrekkelijk:

• De schaalbaarheid; de aanleg kan starten met losse clusters, die later verbonden worden met een of meer backbones.

• De ruimere beschikbaarheid en kennis van warmtebronnen met lage temperatuur in de ondergrond in vergelijking met bronnen op grotere diepte en het relatieve gemak van hun winning.

• Toepasbaarheid in matig tot tamelijk goed geïsoleerde huizen, die dan aardgasvrij kunnen worden zonder kostbare isolatie en met gebruik van bestaande verwarmingssystemen.

• De mogelijkheid van warmte- en koudeopslag.

Hoe zit het de kolenmijnen?

Rechtstreeks onttrekken van water uit voormalige kolenmijnen blijkt riskant, vanwege de kans dat de temperatuur van het warme mijnwater geleidelijk daalt en die van het koude water stijgt. Voormalige kolenmijnen nabij plaatsen met een grote vraag naar warm en koud water kunnen worden gebruikt als buffer als onderdeel van een smart thermal grid

De waarde van het concept van smart thermal grids, zeker in combinatie met de winning van aardwarmte met hoge temperatuur, is echter niet beperkt tot gebieden waar in het verleden steenkool werd gewonnen. Los van het aardgas is stukken dichterbij gekomen.


[1]https://www.dur.ac.uk/news/newsitem/?itemno=37069

[2]https://www.citymetric.com/horizons/coal-power-dirty-abandoned-mines-could-help-create-clean-energy-future-3624

[3]http://www.thinkgeoenergy.com/abandoned-coal-mines-as-source-for-geothermal-direct-use-for-heating/

[4]Zbigniew MaJolepszy: Modelling of geothermal resources within abandoned coalmines, Upper ˜˜Silesia, Poland. Faculty of Earth Sciences, University of Silesia,

[5]https://www.nrcan.gc.ca/sites/oee.nrcan.gc.ca/files/pdf/publications/infosource/pub/ici/caddet/english/pdf/R122.pdf

[6]https://www.sciencedirect.com/science/journal/00489697

[7]Minewater 2.0 project in Heerlen the Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Paper 8th International Renewable Energy Storage Conference and Exhibition, IRES 2013 

https://www.mijnwater.com/wp-content/uploads/2014/04/Energy-procedia_IRES-2013_Verhoeven-V20012013-Final-1.pdf

[8]Weg van gasKansen voor de nieuwe concepten LageTemperatuurAardwarmte en Mijnwater https://www.mijnwater.com/wp-content/uploads/2018/09/CE_Delft_3K61_Weg_van_gas_DEF_LageTemperatuurAardwarmte_en_Mijnwater_20180720.pdf

[9]https://www.bpnieuws.nl/artikel/8015039/lage-temperatuur-aardwarmte/

[10]https://www.bndestem.nl/moerdijk/boren-naar-aardwarmte-in-zevenbergen-wat-we-hier-doen-is-uniek~ac6d00f9/