Smart grids: waar sociale en digitale innovatie samenkomen

De 20ste aflevering van de reeks Bouwen aan de steden van de toekomst – De bijdrage van digitale technologie gaat over elektrificeren, als onderdeel van de klimaatadaptatie. Aan de hand van dit thema kan zowel de rol van digitale technologie als de samenhang tussen digitale en sociale innovatie geïllustreerd worden.


Om burgers en bedrijven te bewegen hun daken met zonnepanelen te bedekken en de aanleg van zonneweiden te stimuleren, heeft de overheid diep in de buidel getast. Er zijn gunstige belastingfaciliteiten gecreëerd en er is een riante salderingsregeling in het leven geroepen, en met succes[1].

Zonne-energie en de overbelasting van het net

De meeste burgers zijn dik tevreden met hun zonnepanelen en de invloed daarvan op hun energierekening[2]. Vooralsnog is geen enkele rekenkamer nagegaan wat de overheid betaalt voor een kilowattuur elektriciteit, die burgers op hun dak produceren.  Het gaat dan om de kosten van alle voornoemde (belasting)faciliteiten en subsidies én over de miljardeninvesteringen in netverzwaring die het gevolg zijn van het grootschalig (terug)leveren aan het net van alle decentraal opgewekte energie. Het is zelfs zo erg dat op het moment dat er meer aanbod dan vraag naar elektriciteit op het net is, de groothandelsprijs van elektriciteit negatief is[3]. In dat geval betaalt de elektriciteitsmaatschappij dankzij de salderingsregeling het volle pond terug en moet zij ook nog eens aan degenen die op dat moment elektriciteit kopen betalen!

Vooralsnog is geen enkele rekenkamer nagegaan wat de overheid betaalt voor een kilowatt elektriciteit, die burgers op hun dak produceren

En nu?  Nu zit de overheid met de gebakken peren en moet de groei van het aantal zonnepanelen worden beperkt. Veel verzoeken voor de grootschalige opwekking van zonne-energie wachten op een transportbeschikking omdat het elektriciteitsnet in grote delen van Nederland overbelast is. 

Er zijn drie manieren om dit probleem op te lossen. De eerste is vergroting van de capaciteit van het hoogspanningsnet. De tweede grootschalige opslag van elektriciteit, zowel voor de korte als de lange termijn. De derde is netwerkmanagement. Over de laatste manier gaat deze blogpost. De minst elegante oplossing daarbij is curtailment. Dit houdt in dat de capaciteit van alle zonneweiden en windparken maar voor 70% benut. Een alternatief is netwerkmanagement door de aanleg van smart grids en daarover wil ik het hebben. Dit heeft meer met digitalisering te maken dan met de aanleg van extra kabels. Een smart grid is een energiesysteem waarbij PV-panelen, elektrische auto’s, warmtepompen, huishoudelijke apparaten, groot maar ook kleinschalige opslagsystemen en onderstations op intelligente wijze met elkaar zijn verbonden. Overigens is meer aandacht voor energieopslag hard nodig en plaatselijk zal zeker niet aan netverzwaring te ontkomen zijn.

Van een gecentraliseerde naar gedecentraliseerde elektriciteitsvoorziening

De elektriciteitsinfrastructuur is overal ter wereld ontworpen voor gecentraliseerde elektriciteitsopwekking, gekenmerkt door eenrichtingsverkeer van producent naar consument. Nu veel consumenten ook producent (‘prosumenten’) zijn geworden en naast de gebruikelijke energiecentrales er op veel plaatsen zonneweiden en windparken ontstaan, moet de netwerkstructuur van de toekomst gedecentraliseerd zijn. Zij zal uit twee of drie niveaus bestaan. Samen zullen deze zorgen voor een stabiel systeem, waarin veel meer elektriciteit omgaat dan tegenwoordig. Deze nieuwe structuur is volop in ontwikkeling. In 2016 werd wereldwijd ongeveer $ 47 miljard besteed aan infrastructuur en software om het elektriciteitssysteem flexibeler te maken, hernieuwbare energie te integreren en klanten beter te bedienen. Een overzichtswerk van deze ontwikkelingen is Promoting Digital Innovations to Advance Clean Energy System (2018). Dit boek kan gratis worden gedownload[4].

Verreweg de meeste prosumenten leveren gemiddeld 65% van de opgewekte elektriciteit terug aan het hoofdnet. Eigen opslagcapaciteit is een deel van de oplossing; hierdoor ontstaat een minigrid dat de noodzaak om terug te leveren aanzienlijk vermindert. Maar er zijn tijden dat het hoofdnet juist is gebaat met terug levering van lokaal opgewekte stroom.

Een volgende stap is daarom dat hoofdnet en mini-netten met elkaar communiceren. We spreken dan van een smart grid.

Het beheer van de productie van energie in grootschalige krachtcentrales (inclusief wind- en zonneparken) zal dan plaatsvinden in samenhang met de regulering van de in- en uitstroom van elektriciteit van het hoofdnet naar de mini-netten. Dat kan ook inhouden dat er signalen worden gegeven aan huishoudens om batterijen te laden of te ontladen, de boiler aan te zetten, het opladen van de auto even uit te stellen of om de productie van energie te stoppen, al naar gelang de hoeveelheid stroom die op het hoofdnet beschikbaar is. Een geautomatiseerd monitoring- en controlesysteem is hiervoor noodzakelijk.

De uitwisseling van gegevens tussen mininetten en hoofdnet heeft veel privacyaspecten, vooral als de netbeheerder invloed krijgt op wat zich ‘achter de meter’ afspeelt.

Een tussenlaag tussen hoofd- en mini-netten biedt dan uitkomst. We spreken dan van een microgrid. Tussen hoofdnet en micronet zit een soort schakelaar, waarmee het microgrid bij een storing zelfs tijdelijk autonoom kan functioneren[5]

Een microgrid bevat drie elementen:[6]

1. Installatie(s) voor lokale energieproductie ten behoeve van meer dan een gebruiker (doorgaans een buurt): zonnepanelen, windmolens, warmtekrachtkoppeling, warmtepomp(en), biomassacentrale, waterkrachtturbine en eventueel een noodproductiesysteem (generator).

2. Een opslagsysteem: thuis- en buurtbatterijen en in de toekomst ook supercondensators en chemische latente warmteopslag.

3. Een digitaal beheerssysteem om het evenwicht tussen de productie van en de vraag naar elektriciteit te garanderen, te bepalen hoeveel energie van het hoofdnet wordt betrokken of daaraan wordt terug geleverd en dat de kosten en baten per huishouden berekent. 

Micro-grids

In een microgrid kunnen huishoudens hun overschotten en tekorten aan stroom onderling uitwisselen zonder directe tussenkomst van de netbeheerder of de elektriciteitsproducenten. Deze hebben uitsluitend te maken met de overschotten en tekorten van het hele microgrid, waarmee de noodzaak om te interfereren in de mini-netten van individuele huishoudens vervalt. Dankzij het feit dat stroomproductie en -consumptie real-time wordt gevolgd, kan de prijs van de elektriciteit van minuut tot minuut worden vastgesteld. De huishoudens die onderdeel zijn van het microgrid kunnen bijvoorbeeld afspreken om zo veel mogelijk stroom in te kopen als de prijs laag is, omdat het hoofdnet tegen overcapaciteit aanloopt. Op zulke momenten kunnen thuisbatterijen, elektrische auto’s, de eventuele buurtbatterij en boilers en warmwatervaten worden opgeladen en opgewarmd. Dit kan volledig geautomatiseerd worden uitgevoerd. Bijvoorbeeld door de Powermatcher, een door TNO ontwikkelde open source toepassing, waarmee inmiddels 1000 mensen in Nederland werken[7]. De onderstaande video illustreert dit[8].

Een microgrid krijgt extra waarde als de gebruikers een energiecoöperatie vormen[9]. Hier kan beslist worden over de algoritmes die de circulatie van de stroom in het microgrid reguleren.  

Een coöperatie kan voorts zorgen voor beheer en onderhoud van de zonnepanelen van overige collectieve voorzieningen als een buurtbatterij, lokale energiebronnen (wind- of zonnepark of aardwarmte). Ook is de coöperatie een goed middel om te onderhandelen met de netwerkbeheerder en de energiemaatschappij.

De virtuele energiecentrale

Door op wijkniveau warmtepomptechniek, energieopwekking en energieopslag aan elkaar te knopen, kan een flinke slag worden gemaakt met de energietransitie. Hier volgt een aantal voorbeelden.

De Amsterdamse virtuele energiecentrale

Een bijna klassiek voorbeeld van een microgrid is de Amsterdamse virtuele energiecentrale. Hier produceren 50 huishoudens stroom met zonnepanelen, slaan die in eigen huis op en verhandelen deze naar beschikbaarheid als de prijs op de energiemarkt het gunstigst is.

Future Living Berlin

Dit is een mooi kleinschalig praktijkvoorbeeld dat is ontwikkeld door Panasonic[10]. Future Living Berlijn bestaat uit een wijkje met appartementengebouwen voor in totaal 90 huishoudens (Zie titelfoto). De woongebouwen zijn voorzien van 600 zonnepanelen die samen met een collectief batterijsysteem zorgen voor een constante stroom duurzame energie. Ook ten behoeve van de zeventien centrale lucht/water-warmtepompen, waarvan er twee tot vijf per woongebouw in cascade staan opgesteld en die voor ruimteverwarming en warm tapwater zorgen. De deelauto’s en gezamenlijke wasmachines, zijn goed voor het milieu en ze bevorderen ook burencontact. Internet of Things speelt ook een rol bij de aansturing van de warmtepompen. Via een cloudplatform houden installateurs op afstand toegang tot deze systemen.

Tesla’s virtuele energiecentrale

Tesla heeft in Australië ook een virtuele energiecentrale gebouwd, maar dan voor 50.000 huishoudens.[11]. Elk huishouden heeft zonnepanelen, met een vermogen van 5 kilowatt en een Tesla Powerwall batterij van 13,5 kilowattuur. De centrale heeft hierdoor een vermogen van 250 megawatt en een opslagcapaciteit van 675 megawattuur. Ook hier laadt elk huishouden de accu en eventueel de auto vol met zelf opgewekte energie en met goedkope energie als het aanbod groot is en ze leveren de energie die over is aan de elektriciteitsmaatschappijen tegen de marktprijs. De deelnemers besparen op deze wijze 20% van de jaarlijkse energiekosten. 

De ultieme stap: autonomie

Ook bedrijven die zonnepanelen willen gebruiken en het overschot aan energie aan het net willen terug leveren lopen steeds vaker tegen de capaciteitsbeperkingen van het hoofdnet aan. Het gevolg is dat steeds meer bedrijven hun stroomvoorziening in eigen hand nemen en daarbij zelfs geheel afzien van een koppeling aan het net. Er inmiddels commerciële oplossingen voor lokale virtual power grids beschikbaar, waarvoor onder andere bedrijven als Alfen[12] en Joulz tekenen[13]. Een van de opties is Energy-as-a-service, waarbij de zakelijke klant niet investeert in een installatie, maar een vast bedrag per maand betaalt. 

Het gebruik van blockchain

Blockchain maakt het mogelijk om de uitwisseling van energieoverschotten tussen prosumenten zonder menselijke tussenkomst uit te voeren. In Brooklyn is daartoe Brooklyn Microgrid opgericht, een ‘benefit corporation’, waarbij elke inwoner die over zonnepanelen beschikt zich kan aansluiten en energie direct, dus zonder tussenkomst van de elektriciteitsmaatschappij kan kopen van of verkopen aan een andere gebruiker[14].

Blockchain zorgt dan voor een veilig, transparant en decentraal grootboek (ledger) van alle energieproductie- en -verbruiksgegevens en transacties op basis van ‘smart contracts’. Dit zijn zelfuitvoerende programma’s, die de uitwisseling van waarde (hier de hoeveelheid elektriciteit) automatiseren op basis van bilateraal overeengekomen voorwaarden. Ook thuis- en buurtaccu’s, individuele en collectieve warmte pompen en oplaadpalen voor auto’s kunnen op dit systeem worden aangesloten. 

Een vergelijkbare pilot met blockchain vindt plaats in het Zuid Duitse plaatsje Wilpoldsried[15]. Projectpartners Siemens, netbeheerder AllgäuNetz, Kempten University of Applied Sciences en het Fraunhofer Institute for Applied Information Technology (FIT) hebben samen het platform en de app ontwikkeld, rekening houdend met de gegeven belastbaarheid van het net. 

Digital twins en de behoefte aan meer inzicht

Met smart grids, variërend van lokale mini- en micronetten tot regionale toepassingen kan netverzwaring substantieel worden verminderd.  Tegelijkertijd creëren ze nieuwe elektriciteitsstromen, zeker waar er sprake is van een directe uitwisseling tussen smartgrids en het hoofdnet.  Vandaar dat er een groeiende behoefte is om deze stromen in kaart te brengen en waar nodig te reguleren. Hierbij kunnen ditgital twins behulpzaam zijn.

De Technische universiteit Delft heeft inmiddels een digital twin ontwikkeld voor een kwart van het Nederlandse hoogspanningsnet[16]. Deze zal geleidelijk worden uitgebreid en het hele net gaan omvatten. Daarvoor wordt de bestaande hoogspanningshal van de TU Delft n omgebouwd tot een Electrical Sustainable Power Lab, dat een digitale afspiegeling zal zijn van elektriciteitsnetwerk, inclusief hoogspanningsmasten, bronnen van wind- en zonne-energie, energieopslag en distributienetwerken. Hiermee kan bijvoorbeeld het effect worden gesimuleerd aan de koppeling van een nieuw windmolenpark.  Het brengt daardoor alle knelpunten in beeld en legt daarmee de basis voor beter netwerkmanagement dan wel de keuze voor netverzwaring.

Maar ook op lokaal niveau doen zich veel belovende ontwikkelingen voor. Daarvoor moeten we vooralsnog in de VS zijn. Het bedrijf Cityzenith heeft samen met de Arizona State University de SmartWorldOS digital twin ontwikkeld en stelt die beschikbaar aan drie steden die samen het Clean Cities – Clean Future programme uitvoeren. Dat zijn Phoenix, Las Vegas en New York[17]. Elk van deze steden bouwt een digitale twin van een deel van het centrum. De twins omvatten alle gebouwen, de transportsystemen en infrastructuur van de betrokken gebieden en worden gevoed door sensoren via een 5G-netwerk worden verzonden. Ze aggregeren 3D (ruimte) + 4D (tijd) gegevens over het feitelijke energiegebruik en visualiseren en analyseren deze. Vervolgens kan de impact van andere vormen van verlichting, verwarming, maar ook van elektriciteitsopwekking met zonnepanelen op het dak, tegen de gevels en in de ramen worden gesimuleerd en gemeten en kan een besluit over hun implementatie worden genomen.

Ik heb een dossier samengesteld over talrijke aspecten van het gebruik van zonne-energie.  Dit dossier diept dit artikel in verschillende opzichten uit. Aan de orde komen onder andere innovatie van zonnepanelen, het gebruik van vensterglas om energie op te wekken en de opslag van elektriciteit.  Wie geïnteresseerd is treft het dossier hier aan.


[1] https://expirion.nl/blog-51-groei-zonnepanelen-2020/

[2] https://grist.org/energy/hot-real-estate-tip-an-all-electric-home-will-probably-save-you-money/

[3] https://www.change.inc/energie/zonnepark-energieopslag-34029

[4]https://cfrd8-files.cfr.org/sites/default/files/report_pdf/Essay%20Collection_Sivaram_Digital%20Decarbonization_FINAL_with%20cover_0.pdf

[5] https://www.fastcompany.com/90263250/this-new-florida-neighborhood-has-zero-emissions-tons-of-smart-tech-and-is-hurricane-proof?utm_source=postup&utm_medium=email&utm_campaign=Fast%20Company%20Daily&position=2&partner=newsletter&campaign_date=11082018

[6] https://www.energids.be/nl/vraag-antwoord/wat-is-een-microgrid/2129/

[7] https://www.tno.nl/media/1986/tno-powermatcher-jrv140416-01.pdf

[8] https://www.youtube.com/embed/SgH90ONknbQ

[9] https://www.dropbox.com/s/0x2bp6olxkalsqi/2018%2010%2004%20EXP%20Samen%20energie%20winnen.docx?dl=0

[10] https://www.vakbladwarmtepompen.nl/projecten/artikel/2020/07/futuristisch-project-in-berlijn-is-showcase-totaalsysteem-voor-energie-en-verwarming-1016184?tid=TIDP3148692X98D5FD782BE64AC385B6F1FF61704EC9YI4&_ga=2.90081107.974094373.1610637745-307086876.1610637745

[11] https://electrek.co/2018/02/04/tesla-powerwall-solar-virtual-power-plant/

[12] https://alfen.com/nl

[13] https://joulz.nl/nl

[14] https://medium.com/cryptolinks/trading-energy-will-the-brooklyn-microgrid-disrupt-the-energy-industry-a15186f530b6

[15] https://www.smartcitiesworld.net/news/news/blockchain-based-electricity-trading-platform-launched-in-german-municipality-5794

[16] https://www.tudelft.nl/stories/articles/bouwen-aan-een-digitale-tweeling-van-het-elektriciteitsnet

[17] https://cities-today.com/industry/new-york-city-digital-twin-model/

[18] https://www.change.inc/infra/insight-report-energietransitie-hoe-verwarm-je-7-miljoen-woningen-31731